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Abstract

In this paper, we propose a new approach based on data mining techniques and probabilistic models to compare and analyze
finite element results of partial differential equations. We focus on the numerical errors produced by linear and quadratic finite
element approximations. We first show how error estimates contain a kind of numerical uncertainty in their evaluation, which
may influence and even damage the precision of finite element numerical results. A model problem, derived from an elliptic
approximate Vlasov–Maxwell system, is then introduced. We define some variables as physical predictors, and we characterize
how they influence the odds of the linear and quadratic finite elements to be locally “same order” accurate. Beyond this example,
this approach proposes a method to compare, between several approximation methods, the accuracy of numerical results.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

In many physical problems, we are limited first by our ability to measure observations and then to define the gap
between the real problem and the mathematical model used to describe it. This is often referred as the modeling error.
In previous papers [1,2], we have proposed to apply data mining techniques to evaluate this error. We relied on the
fact that data mining techniques have already proved to be efficient in other contexts which deal with massive data,
like in biology [23], medicine [28,27], marketing [25], advertising and communications [9,11].

When we attempt to simulate the problem numerically, we must identify the possible limitations of the numerical
techniques employed. This is sometimes referred as the approximation error. In this article, using data mining
techniques and probabilistic models, we extend our approach to compare numerical errors produced by different
finite element approximations. Indeed, there is a need to investigate ways to quantify uncertainty and its impact, also
in the case of numerical approximations, albeit supported by a mathematical theory, i.e. error estimate analysis.

Following [30] or [16], we distinguish between errors and uncertainty as follows: errors are detectable insuffi-
ciencies not due to lack of knowledge, whereas uncertainties are linked with lack of knowledge. As a consequence,
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one can consider errors as deterministic quantities, whereas uncertainties are inherently stochastic. This justified the
probabilistic framework we will use in this article.

In that spirit, numerical simulations can be subject to uncertainty for instance in boundary conditions, geometry
of the physical domain, etc., but they are also subject to uncertainty in their accuracy estimation. Indeed, an error
estimate, even accurate, is an approximation to the actual unknown error, due to the presence of uncertainty that we
will highlight in the following sections. Hence, uncertainty quantification of a given numerical method can be an
interesting step towards its certification, in addition to the well known error estimate analysis.

For this purpose, we consider finite elements, and we aim at identifying a kind of stochastic behavior in finite
element error estimates, which justify our stochastic approach later on. Accordingly, large databases that contain
numerical approximations will be explored, in order to see whether and where precise finite elements are needed to
guarantee accuracy. We will also show the limits of the approach, mainly due to the lack of the reference solution.

To illustrate our method, we introduce a model problem – a quasi-static Vlasov–Maxwell model – which models
charged particle beams in plasma physics problems. We derive two numerical approximation methods, based on linear
and quadratic finite elements [10], denoted respectively P1 and P2. Then, we compare the accuracy between the two
implemented methods by modeling the dependency of the odds, which characterizes when P1 and P2 finite elements
produce equivalent results.

More specifically, our objective is to propose data mining and probabilistic tools to ascertain situations where P1
and P2 finite elements lead to equivalent results. Our method will mine stored data of computed approximations to
identify the predictors responsible of such a situation. However, at this point, we do not seek under what circumstances
one leaves the P2 finite element for the P1 ones, to get accurate results for a given concrete application.

This article is organized as follows. In Section 2, we consider the global framework of a general elliptic
variational formulation, and we highlight where and how a quantitative uncertainty appears in finite elements error
estimates. Then, in Section 3, we introduce a model problem to illustrate our approach, namely a quasi-static paraxial
Vlasov–Maxwell approximation. Numerical solutions are then computed by a P1 and P2 finite element Particle-In-
Cell method. Section 4 will be devoted to the data mining and probabilistic models. After a brief presentation of the
data mining tools involved, we will use them on our model problem approximations. Conclusions regarding equivalent
numerical P1 and P2 approximations will be drawn.

2. Uncertainty in finite elements error estimate

We propose an approach based on statistical and probabilistic models to compare and analyze finite element results
of partial differential equations. More precisely, we aim to explore large datasets in order to see whether high-order
finite elements are required to guarantee accuracy. Our purpose in this section is to define “the same order” notion.
Starting from finite element error analysis, we illustrate how two different finite element approximations can be of the
“same order”, due to a quantitative uncertainty appearing in the error estimates.

To begin with, let us recall some familiar notions regarding finite element error estimate of partial differential
equations. Our main focus will be on a comparison of numerical errors produced by P1 and P2 finite element
approximations (for more details see [3]). The aim is to show a kind of stochastic behavior in finite element error
estimates, justifying a stochastic approach later on.

Since our study focuses mainly on space-dependent part of the model (not the time-dependent one, if any), we
consider in what follows an elliptic standard problem, that can be viewed as the stationary problem associated with
the time-dependent one. Indeed, when looking at a time-dependent problem, after time discretization, one generally
solves a sequence of stationary problems, one for each time step. Hence, for a time-dependent problem, the method
proposed here, derived at each time step, can be then accumulated over time.

Let V be a Hilbert space (with norm ∥.∥V ). Throughout this section, a(·, ·) denotes a bilinear, continuous and
V -elliptic form defined on V × V , and L(·) a linear continuous form defined on V . We introduce the abstract elliptic
variational formulation

Find u ∈ V such that
a(u, v) = L(v), ∀v ∈ V .

(1)

Existence and uniqueness of a solution u of (1) is guaranteed by the Lax–Milgram theorem [12]. Let us introduce a
finite dimension subset Vh of V , and consider the approximate solution uh of u, that solves the approximate variational
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