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Abstract

One of the most frequently encountered problems in practice is to combine a priori knowledge about a physical system with
experimental data to provide on-line estimation of an unknown dynamic state and system parameters. The classical way for solv-
ing this problem is to use adaptive filtering techniques. The adaptive schemes for the maximum likelihood estimation based on
gradient-based optimization methods are, in general, preferable. They require the likelihood function and its gradient evaluation
(score), and might demand the Fisher information matrix (FIM) computation. All techniques for the score and the FIM calculation
in linear dynamic systems yield the implementation of the Kalman filter (KF) and its derivatives (with respect to unknown system
parameters), which is known to be numerically unstable. An alternative solution can be found among algorithms developed in
the KF community for solving ill conditioned problems: the square-root algorithms, the UD-based factorization methods and the
fast SR Chandrasekhar–Kailath–Morf–Sidhu techniques. Recently, these advanced KF implementations have been extended on
the filter derivatives computation. However there is no systematic way of designing the robust “differentiated” methods. In this
paper, we develop a unified square-root methodology of generating the computational techniques for the filter/smoother derivatives
evaluation required in gradient-based adaptive schemes for the score and the FIM computation.
c⃝ 2015 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Application of the Kalman filter (KF) for estimating an unknown state vector of linear dynamic system assumes
a complete a priori knowledge of the process and measurement noise statistics. In most practical situations, these
statistics are unknown. The classical way of determining the uncertain information is to use adaptive filtering (AF).
A number of approaches exist for performing the AF, i.e. for making the filtering method as a learning algorithm;
see the detailed discussion in [20]. One of the most frequently used AF techniques is to combine a priori knowledge
about a physical system with experimental data to provide on-line estimation of an unknown dynamic state and system
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parameters simultaneously. Such AF schemes consist of a recursive optimization method to identify uncertain system
parameters by minimizing a properly defined performance index (PI) and the filtering method, see [2,6]. The filter in-
side the AF is used to estimate the states and to calculate the PI. If the maximum likelihood principal is implemented,
then the negative log likelihood function (LF) represents the PI. It is then used in the recursive optimization method to
improve the estimates of the process parameters. Among optimization methods, the gradient-based algorithms have a
high convergence rate and, in general, are preferable. They require a determination of the log LF gradient (known as
a “score”) and might demand the Fisher information matrix (FIM) calculation.

The classical approach for the score and the FIM computation is based on the explicit differentiation of the KF
equations (with respect to unknown system parameters). It leads to a set of p vector equations, known as the filter
sensitivity equations, and a set of p matrix equations, known as the Riccati-type sensitivity equations, where p is the
number of unknown system parameters to be estimated. This forward filtering method requires roughly the implemen-
tation of the p equivalent KF’s all running recursively in the forward time direction. The alternative approach is the
backward filtering approach. The method was first designed by Sandell and Yared in [23] and then improved in [32].
The backward filtering technique is based on the theory of adjoint equations. They run backward in time and compute
the adjoint variables, which together with the forward (KF) variables perform the evaluation of the score. In contrast to
the direct (forward) approach, this method requires roughly two KFs. The backward filtering technique was used for
the reduced gradient evaluation in the prediction error identification as well; see [10,29]. The most recently designed
and the most advanced approach for the score evaluation requires only smoothing algorithm [14,25,26]. This method
enables the score computation exactly in a single pass of the KF and a smoother.

This paper addresses the numerical aspects of the log LG and the FIM computation. All techniques mentioned
above require the implementation of the KF/smoother and its derivatives (with respect to unknown system parame-
ters). It is usually carried out by the conventional implementation (see, for instance, the methodology in [5,7]), which
is known to be numerically unstable with respect to roundoff errors [30,31]. This yields to a failure of the filter and,
hence, to incorrect PI evaluation. Consequently, it destroys the entire AF computational scheme for the system param-
eters and states estimation. The solution can be found among algorithms developed in the KF community for solving
ill conditioned problems. These are the array square-root (SR) algorithms [3,13,22], the UD-based factorization meth-
ods [1,4] and the fast SR Chandrasekhar–Kailath–Morf–Sidhu KF techniques [11,21,24]. Such methods perform the
robust filtering having the property of better conditioning and reduced dynamical range. Apart from numerical advan-
tages, array SR algorithms appear to be better suited to parallel and to very large scale integration (VLSI) implemen-
tations [12, Chapter 12]. Recently, these advanced KF algorithms have been extended on the derivatives computation
required in gradient-based AF schemes for the score and the FIM evaluation. More precisely, such “differentiated”
techniques have been designed for the SR schemes in [2,16,27], for the UD-based factorization methods in [28] and
for the fast KF implementations in [17,19]. However there is no systematic way of designing the “differentiated”
algorithms. The goal of this paper is to develop a unified methodology of generating the robust SR methods for the
KF/smoother derivatives evaluation required in the gradient-based AF for the score and the FIM computation. Similar
result has been obtained recently in [18], however, it does not cover the fast SR Chandrasekhar–Kailath–Morf–Sidhu
filters. The fast algorithms employ J -orthogonal rotations instead of usual orthogonal transformations at each iteration
step of the filter/smoother. The unified methodology developed in this paper is applicable for any SR method with a
J -orthogonal or usual orthogonal transformation.

2. Maximum likelihood estimation of linear discrete-time stochastic systems

Consider the discrete-time linear stochastic system

xk+1 = Fθ xk + Gθwk, k = 1, . . . , N , (1)

zk = Hθ xk + vk (2)

where xk ∈ Rn and zk ∈ Rm are, respectively, the state and the measurement vectors; k is a discrete time, i.e. xk means
x(tk). The process noise, {wk}, and the measurement noise, {vk}, are Gaussian white-noise processes, with covariance
matrices Qθ ≥ 0 and Rθ > 0, respectively. All random variables have known mean values, which we can take without
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