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On the geometry of the rotating liquid drop

Ivaïlo M. Mladenov a,b, John Oprea b,∗
a Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria

b Cleveland State University, Mathematics Department, 2121 Euclid Avenue, Cleveland, OH 44115, United States

Received 14 November 2011; received in revised form 14 September 2013; accepted 21 April 2014
Available online 4 May 2014

Abstract

Here we consider the problem of a fluid body rotating with a constant angular velocity and subjected to surface tension. Determining
the equilibrium configuration of this system turns out to be equivalent to the geometrical problem of determining the surface of
revolution with a prescribed mean curvature. In the simply connected case, the equilibrium surface can be parameterized explicitly
via elliptic integrals of the first and second kind. Here, we present two such parameterizations of the drops and we use the second
of them to study finer details of the drop surfaces such as the existence of closed geodesics.
© 2014 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Let us consider a fluid body with incompressible mass rotating with a constant angular velocity and subjected to
surface tension. The problem then is to find the shape which this mass will have under prescribed angular velocity.

The only force acting inside the drop is the centripetal force generated from the potential ρω2r2/2 and directed away
from the axis. Here, ρ is the fluid density, ω is the fixed angular velocity and r is the radial distance from the axis of
rotation. Because the fluid is assumed to be incompressible, a constant internal pressure pi results within the body.
According to the Laplace–Young equation [9], at the free surface S enclosing the drop the surface tension σ generates
a pressure proportional to its mean curvature H, σ H. Finally, we must also add the constant pressure pe of the external
fluid. The surface in equilibrium is therefore described by equating these pressures:

pi + ρω2r2

2
= σH + pe, (1)

where ω, pe, pi, ρ, σ are constants. This then reduces immediately to the equation:

H = 2ãr2 + c̃, (2)

where ã is a positive constant and c̃ is arbitrary.
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Fig. 1. Geometry of the profile curve.

2. Geometry and surface invariants

Let us now recall the well-known fundamental relations among meridional curvature κμ, circumferential curvature
κπ and mean curvature H for surfaces of revolution [3],

κμ = d(rκπ)

dr
, H = κμ + κπ

2
. (3)

The simultaneous solution of the system of Eqs. (2) and (3) is

κπ = ãr2 + c̃ + C

r2 , κμ = 3ãr2 + c̃ − C

r2 , (4)

where C is an integration constant which will be assumed to be zero from now on. We make this assumption here in
order to get analytical formulas for the rotating drop. At the moment, letting C be non-zero only affords numerical
analysis.

Moreover, ifRπ is the distance from the surface point to the intersection of the normal at that point with the symmetry
axes (see Fig. 1, where we use R for the abscissa simply to match the notation Rπ), then we have additionally,

κπ = 1

Rπ

= sin θ

r
, (5)

and therefore

dz

dr
= − tan θ = − rκπ√

1 − (rκπ)2
. (6)

Note that we take the convention that θ is measured from the horizontal line through the point and is positive when
going clockwise. This means that θ will begin negative with the consequence that the derivative dz/dr will be positive
and the height of the curve will increase.

Finally, the ordinate of the profile curve is given by the integral

z(r) = −
∫

(ãr3 + c̃r)dr√
1 − (ãr3 + c̃r)2

. (7)

Here, the indefinite integral produces an expression in r that gives the r-dependent formula for z. From these consid-
erations, we obtain a profile curve for the rotating drop, (r, z(r)) with

x(u, v) = (r cos(v), r sin(v), z(r)),

being a parametrization for the surface of revolution S that is the drop itself.
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