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a b s t r a c t

In the double TSP with multiple stacks, one performs a Hamiltonian circuit to pick
up n items, storing them in a vehicle with s stacks of finite capacity q satisfying last-
in-first-out constraints, and then delivers every item by performing a Hamiltonian
circuit. We introduce an integer linear programming formulation with arc and
precedence variables. We show that the underlying polytope shares some polyhedral
properties with the ATSP polytope, which let us characterize large number of facets
of our polytope. We convert these theoretical results into a branch-and-cut algorithm
for the double TSP with two stacks. Our algorithm outperforms the existing exact
methods and solves instances that were previously unsolved.

© 2016 Elsevier B.V. All rights reserved.

In this paper, we study a generalization of the Traveling Salesman Problem (TSP), namely the double
TSP with multiple stacks. In this problem, n items have to be picked up in one city, stored in a vehicle
having s identical stacks of finite capacity, and delivered to n customers in another city. We will assume
that the pickup and the delivery cities are very far from each other, thus the pickup phase has to be
entirely completed before the delivery phase starts. The pickup (resp. delivery) phase consists in performing
a Hamiltonian circuit, i.e., starting from a depot, the n pickup (resp. delivery) locations have to be visited
in sequence exactly once before coming back to the depot. Each time a new item is picked up, it is stored
on the top of an available stack of the vehicle according to its capacity and no rearrangement of the stacks
is allowed. During the delivery circuit the stacks are unloaded following a last-in-first-out policy, that is,
only items currently on the top of their stack can be delivered. The goal is to find the pickup and delivery
circuits which minimize the total traveled distance, subject to the last-in-first-out consistency.
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The double TSP with multiple stacks is introduced in [1] as a fleet management project initiated in
cooperation with a software company. The problem arises from real-world applications. As the authors point
out in [1], the items to be transported are usually standardized Euro Pallets, which are identical from a
packing point of view. Moreover, repacking is not allowed because of insurance issues.

The double TSP with multiple stacks is NP-hard since, when the vehicle has only one stack, it corresponds
to the Asymmetric Traveling Salesman Problem (ATSP): indeed, in this case, due to the last-in-first-out
policy, the delivery circuit is nothing but the pickup circuit performed in the reverse order. Moreover,
deciding if a given pair of pickup and delivery circuits satisfies the last-in-first-out policy is NP-complete [2].
It becomes polynomial when the number of stacks is fixed [3] or if the stacks have infinite capacity [4,2].

Since its first appearance, the double TSP with multiple stacks has received increasing attention. Both
exact algorithms and heuristics have been designed for this problem over the past few years. Regarding the
exact algorithms, in [5,6], the authors design a procedure to iteratively generate the k-best ATSP pickup
and delivery solutions and to find the best combination satisfying the last-in-first-out consistency. Several
exponential and polynomial size mixed integer linear programming formulations have been proposed and
tested in branch-and-cut frameworks [7,8]. An additive branch-and-bound algorithm [9] has been developed
for the case with two stacks. In [10], the authors adapt a branch-and-cut algorithm for the pickup and
delivery TSP with multiple stacks to the double TSP with multiple stacks.

From a computational point of view, these algorithms clearly show that the double TSP with multiple
stacks is extremely hard to solve with exact methods. In particular, the difficulty of the problem increases
with the capacity of the stacks [8]. As a consequence, given a number of items equal to the total capacity,
the hardest case is the double TSP with two stacks. Currently, no algorithm efficiently solves instances with
capacity greater than seven.

In this paper, we first focus on the double TSP with multiple stacks of infinite capacity. Section 1 is
devoted to notation and definitions. In Section 2, we introduce an integer linear programming formulation
with arc and precedence variables. We then show in Section 3 that the underlying polytope shares some
polyhedral properties with the ATSP polytope. These links let us characterize a super-polynomial number of
facets of our polytope. Afterwards, in Section 4, we strengthen our formulation by exploiting the last-in-first-
out consistency of the pickup and delivery circuits. In Section 5, we convert these theoretical results into a
branch-and-cut algorithm for the double TSP with two stacks. It turns out that our algorithm outperforms
the existing exact methods and solves new instances of the benchmark from the literature—see Section 6.

1. Definitions

Given a set S ⊆ Rm, conv(S) is the convex hull of S; the symbol dim(S) denotes the dimension of
the affine hull of S. Given S ⊆ Rn × Rd, its projection into Rn is the set projx(S) = {x ∈ Rn : ∃y ∈
Rd such that (x, y) ∈ S}. The projection projy(S) of S into Rd is defined in an analogous manner. For S a
finite set, x ∈ R|S| and H ⊆ S, we write x(H) for


h∈H xh.

We denote by Gn the complete digraph having V = {0, . . . , n} as vertex set and A = {(i, j) : i ̸= j ∈ V } as
arc set. A circuit of Gn is a set of arcs that induces a connected subgraph in which every vertex has exactly
one entering and one leaving arc. Its length is the number of arcs it contains. A circuit is said Hamiltonian if
its corresponding subgraph contains all the vertices. The reverse of a circuit C, denoted by

←
C, is the circuit

composed of the opposite arcs of C.
A relation ≺ on {1, . . . , n} is a linear ordering if it is reflexive, antisymmetric, transitive and total. Such

a relation is represented by an order v1, . . . , vn of {1, . . . , n}, where vi ≺ vj whenever i < j. It is noteworthy
that a Hamiltonian circuit C = {(0, v1), (v1, v2), . . . , (vn−1, vn), (vn, 0)} of Gn induces a linear ordering
v1, . . . , vn of {1, . . . , n}. This ordering will be denoted by ≺C . Moreover, the converse holds because Gn is
complete. Hence, such a Hamiltonian circuit C will also be written C = 0, v1, . . . , vn, 0.



Download English Version:

https://daneshyari.com/en/article/1141400

Download Persian Version:

https://daneshyari.com/article/1141400

Daneshyari.com

https://daneshyari.com/en/article/1141400
https://daneshyari.com/article/1141400
https://daneshyari.com

