
Operations Research Letters 44 (2016) 635–639

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

A note on non-degenerate integer programs with small
sub-determinants
S. Artmann a, F. Eisenbrand b, C. Glanzer a, T. Oertel c,∗, S. Vempala d, R. Weismantel a
a Swiss Federal Institute of Technology, Zürich (ETH Zürich), Switzerland
b École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
c Cardiff University, United Kingdom
d Georgia Institute of Technology, United States

a r t i c l e i n f o

Article history:
Received 11 March 2016
Received in revised form
30 June 2016
Accepted 5 July 2016
Available online 18 July 2016

Keywords:
Integer programming
Restricted determinants
Linear programming

a b s t r a c t

The intention of this note is two-fold. First, we study integer optimization problems in standard form
defined by A ∈ Zm×n and find an algorithm to solve such problems in polynomial-time provided that
both the largest absolute value of an entry in A and m are constant.

Then, this is applied to solve integer programs in inequality form in polynomial-time, where the
absolute values of all maximal sub-determinants of A lie between 1 and a constant.

© 2016 Published by Elsevier B.V.

1. Introduction

Let A ∈ Zm×n be amatrix such that all of its entries are bounded
in absolute value by an integer ∆. Assume that for each row index
i, gcd(Ai,·) = 1. We call the determinant of an (n × n)-sub-matrix
of A an (n × n)-sub-determinant of A. Let

δmax(A) := max{|d| : d is an (n × n)-sub-determinant of A}.

We study the complexity of an integer programming problem in
terms of the parameter ∆ when presented in standard form (1).
Moreover, we study integer programming problems in inequality
form (2) that are associated with the matrix A whose ‘complexity’
is measured by the parameter δmax(A).

max

cT x : Ax = b, x > 0, x ∈ Zn , (1)

max

cT x : Ax 6 b, x ∈ Zn . (2)

In what follows, we use the Turing model when we measure time
complexity.

It is known that when the absolute value of all sub-
determinants of A is bounded by one, A is totally unimodular and
the integer programs (1) and (2) are polynomially solvable. This

∗ Corresponding author.
E-mail address: oertelt@cardiff.ac.uk (T. Oertel).

concept of total unimodularity was pioneered by the works of
Hoffman, Kruskal, Veinott, Dantzig and many other researchers. It
has led to a beautiful and fundamental theory that is so important
that it is covered by all standard textbooks in combinatorial
optimization nowadays. For instance, see [8] for a thorough
treatment of the subject.

When δmax(A) > 1, then surprisingly little is known.
Bonifas et al. showed in [1] that for a bounded polyhedron

P = {x ∈ Rn
: Ax 6 b} its (combinatorial) diameter is bounded

in the order of O(δmax(A)2 ·n3.5
· log(n · δmax(A))). This improves an

important result of Dyer and Frieze [2] that applies to TU-matrices.
Veselov andChirkov (2009) showed in [9], how (2) canbe solved

polynomially in m and n and the encoding size of the data when
δmax(A) 6 2 and no (n × n)-sub-matrices are singular.

There exists a dynamic programming approach to solve (1) by
Papadimitriou [7], see also [8], Part IV, Section 18.6: Let ∆(A, b) be
an upper bound on the absolute values of A and b. Then, if (1) is
feasible and bounded, it has an optimal solution with components
bounded by U := n(n + 1)∆(A, b)(m · ∆(A, b))m.

The dynamic program is a maximum weight path problem on
a properly defined (acyclic) graph. The number of vertices in the
graph is

|V | = (n + 1)(2U + 1)m,

and the number of edges is bounded by

|E| 6 (2U + 1)m|V |.

http://dx.doi.org/10.1016/j.orl.2016.07.004
0167-6377/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.orl.2016.07.004
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2016.07.004&domain=pdf
mailto:oertelt@cardiff.ac.uk
http://dx.doi.org/10.1016/j.orl.2016.07.004

636 S. Artmann et al. / Operations Research Letters 44 (2016) 635–639

Let λ(m, n, ∆(A, b)) denote the running time of the dynamic
program. As λ(m, n, ∆(A, b)) ∈ O(|V | + |E|), one obtains

λ(m, n, ∆(A, b)) ∈ O

n(2U + 1)2m


.

We show how to avoid a dependence of the running time
on the largest absolute value of an entry in b: For fixed m, an
integer program can be solved in time polynomially bounded by
n, the largest absolute value ∆ of an entry in A, and the binary
encoding size of b. This result is one important ingredient to solve
the optimization problem (2) in polynomial-time for any constant
values of δmax(A), provided that A has no singular (n × n)-sub-
matrices and rank(A) = n. It turns out that the condition that all
(n × n)-sub-determinants shall be non-zero imposes very harsh
restrictions on A. In particular, A can have at most n + 1 rows
provided that n exceeds a certain constant.

2. Dynamic programming revisited

2.1. The pure integer case

We show that one can solve problem (1) in time polynomial in
n, ∆ and ⟨b⟩, where ∆ = maxi,j{|Ai,j|} and ⟨b⟩ = log2(maxi{|bi|}).
This is an improvement over Papadimitriou’s approach [7], as we
eliminate the unary dependency on b. For S ⊆ {1, . . . , n}, let AS
denote the matrix stemming from A by the columns indexed by S.

Lemma 1. If the integer program (1) is feasible and bounded, there
exists an optimal solution x∗

∈ Zn where at least n − m components
of x∗ are bounded by (m+2) · (m ·∆)m. Furthermore, the columns of
A corresponding to components of x∗ that are larger than (m + 2) ·

(m · ∆)m are linearly independent.

The proof of this lemma is in the Appendix. Once this lemma is
shown, we have the following result.

Theorem 2. There exists an algorithm that solves the integer
programming problem (1) in time bounded by

ρ(m, n, ∆, ⟨b⟩) ∈ O (2τ1 · ∆τ2 · nτ3 · τ) ,

where τ1, τ2 and τ3 are polynomials in m and τ is a polynomial in m,
n and ⟨b⟩ := log2(maxi{|bi|}).

Proof. We assume that the problem is feasible and bounded. Let
x∗ be the optimal solution as defined in Lemma 1 and let S ⊆

{1, . . . , n} be the set of indices of the components of x∗ that are
bounded by (m + 2) · (m · ∆)m. By S̄, we denote the complement
of S. Now, let

b′′
:=


j∈S

x∗

j A·,j and b′
:= b − b′′.

It follows that x∗

S is an optimal solution of the integer program

max


j∈S

cjxj :

j∈S

xjA·,j = b′′, x ∈ ZS
>0


, (3)

and x∗

S
is an optimal solution of the integer program

max


j∈S

cjxj :

j∈S

xjA·,j = b′, x ∈ ZS
>0

 . (4)

Since ∥b′′
∥∞ 6 ∆·n·(m+2)·(m·∆)m, the integer programming

problem (3) can be solved with Papadimitriou’s algorithm [7] in
time O(λ(m, n, ∥b′′

∥∞)).

Since the columns of AS are linearly independent, x∗

S
is the

unique solution of the system of equations
j∈S

xjA·,j = b′,

which can be found by using Gaussian elimination.
The algorithm starts by enumerating all possible

O

2m

· ∆m
· nm

· (m + 2)m · (m · ∆)m
2


vectors b′′ and then proceeds by enumerating all
n
m


= O(nm)

components of x∗ whose absolute value might be larger than
(m + 2) · (m · ∆)m in the optimal solution x∗. Then, one solves
the integer program (3) with Papadimitriou’s algorithm and the
integer program (4) using Gaussian elimination.

Altogether this yields a running time of

O

2m

· ∆m
· nm

· (m + 2)m · (m · ∆)m
2
· nm

· λ(m, n, ∥b′′
∥∞) · τ


,

where τ is a polynomial in m, n and log(maxi{|bi|}) which
corresponds to the running time of the Gaussian elimination
algorithm (cf. [4, Section 1.4]).

We can assume that m 6 n, thus eliminating all terms of the
form mτ∗ , for τ∗ a polynomial in m. This gives the desired running
time. �

2.2. Extensions to the mixed integer setting

This section is devoted to generalizations of Lemma 1 and
Theorem 2 in order to apply the idea from the previous section to
mixed-integer optimization problems of the form

max

cT x + dTy : Ax + By = b, x, y > 0, x ∈ Zn, y ∈ Rl , (5)

where, as before, A ∈ Zmn with upper bound ∆ on the absolute
values of A, b ∈ Zm, c ∈ Zn and d ∈ Ql.

If we view problem (5) as a parametric integer problem in
variables x only, then Lemma 1 is applicable. This observation
directly leads us to a mixed-integer version of Lemma 1.

Lemma 3. If the mixed-integer program (5) has an optimal solution,
then it has an optimal solution (x∗, y∗) such that x∗

∈ Zn, where at
least n − m components of x∗ are bounded by (m + 2) · (m · ∆)m.
Furthermore, the columns of A corresponding to components of x∗

that are larger than (m + 2) · (m · ∆)m are linearly independent.

With this lemma, we are prepared to prove a mixed-integer
version of Theorem 2. In the special case when m is a constant,
this result gives rise to a polynomial-time algorithm for solving the
mixed-integer optimization problem (5).

Theorem 4. There exists an algorithm that solves the mixed-integer
programming problem (5) in time bounded by

O (2τ1 · ∆τ2 · nτ3) · κ(m, l, ∆, ⟨b⟩),

where τ1, τ2 and τ3 are polynomials in m, κ(m, l, ∆, ⟨b⟩) is the worst
case running time for solving a mixed-integer optimization problem
of the type (5) with at most m integer variables and l continuous
variables and ⟨b⟩ := log(maxi{|bi|}).

Proof. Let (x∗, y∗) be an optimal solution of problem (5) satisfying
Lemma 3. By S ⊆ {1, . . . , n} we denote the indices of the compo-
nents of x∗ that are bounded by (m + 2) · (m · ∆)m. Furthermore
let

b′′
:=


j∈S

x∗

j A·,j and b′
:= b − b′′.

Download English Version:

https://daneshyari.com/en/article/1142030

Download Persian Version:

https://daneshyari.com/article/1142030

Daneshyari.com

https://daneshyari.com/en/article/1142030
https://daneshyari.com/article/1142030
https://daneshyari.com

