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a b s t r a c t

We consider an n-player strategic game with finite action sets and random payoffs. We formulate this
as a chance-constrained game by considering that the payoff of each player is defined using a chance
constraint. We consider that the components of the payoff vector of each player are independent nor-
mal/Cauchy random variables. We also consider the case where the payoff vector of each player follows
a multivariate elliptically symmetric distribution. We show the existence of a Nash equilibrium in both
cases.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In 1928, John von Neumann [19] showed that there exists a
mixed strategy saddle point equilibrium for a two player zero
sum matrix game. In 1950, John Nash [18] showed that there
always exists a mixed strategy Nash equilibrium for an n-player
general sum game with finite number of actions for each player.
In both [18,19], it is considered that the players’ payoffs are
deterministic. However, there can be practical cases where the
players’ payoffs are better modeled by random variables following
certain distributions and as a result players compete in a stochastic
Nash game. The wholesale electricity markets are the good
examples that capture this situation. The randomness in an
electricity market is present due to various external factors,
e.g., wind integration [17], and consumers’ random demand [7].

One way to study stochastic Nash games is by using expected
payoff criterion. Ravat and Shanbhag [21] considered stochastic
Nash games using expected payoff criterion. They showed the ex-
istence and uniqueness of Nash equilibrium, under certain condi-
tions, in various cases. Xu and Zhang [25] used a sample average
approximation method to solve stochastic Nash equilibrium prob-
lems. Jadamba and Raciti [10] used a variational inequality ap-
proach on probabilistic Lebesgue spaces to study stochastic Nash
games. The stochastic Nash games under expected payoff crite-
rion using stochastic variational inequalities are considered in
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[11,15,16,26] and references therein. In these papers, the stochas-
tic approximation based schemes to compute the Nash equilibria
of stochastic Nash games have been given.

The expected payoff criterion is more appropriate for the
cases where the decision makers are risk neutral. The risk averse
stochastic Nash games arising from electricity market using risk
measures as CVaR and variance are considered in [14,21] and [6]
respectively. A risk averse payoff criterion based on chance
constraint programming [3,20] has also received some attention
in electricity market [7,17]. These games are called chance-
constrained games. In [17], the randomness in payoffs is due
to the installation of wind generators on the electricity market.
The authors consider the case where the random variables that
represent the amount of wind are independent normal random
variables, and they also consider the casewhere the random vector
follows a multivariate normal distribution. In [7], the consumers’
random demand is assumed to be normally distributed. A game
theoretic situation in electricity market where the action sets
are finite is considered in [23]. Although the players’ payoffs
are deterministic in [23], the counterpart of the model, where
the payoffs are random variables, in chance-constrained game
setting can be considered. Only few theoretical results on zero sum
chance-constrained gameswith finite action sets of the players are
available in the literature so far [1,2,4,5,24].

In this paper, we focus on the games where the payoffs of the
players are randomvariableswith knownprobability distributions.
The case where probability distributions of the random payoffs
are not known completely is considered in [22]. The authors use
distributionally robust approach to handle these games. To the
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best of our knowledge, there is no result on the existence of a
Nash equilibrium for a chance-constrained game even when the
action sets of all the players are finite. We consider an n-player
strategic game where the action set of each player is finite and
the payoff vector of each player is a random vector. We formulate
this problem as a chance-constrained game by considering that the
payoff of each player is defined using a chance constraint.We show
the existence of a Nash equilibrium for a chance-constrained game
in the following cases.

1. If all the components of the payoff vector of each player are
independent normal/Cauchy random variables, there exists
a mixed strategy Nash equilibrium for a chance-constrained
game. As a special case, if only one component of the payoff
vector of each player is a random variable and all other
components are deterministic, the Nash equilibrium existence
result can be extended to all the continuous probability
distributions whose quantile functions exist.

2. If the payoff vector of each player follows a multivariate
elliptically symmetric distribution, there always exists a mixed
strategy Nash equilibrium for a chance-constrained game.

The structure of the rest of the paper is as follows: in Section 2
we give the definition of a chance-constrained game. Existence of
a mixed strategy Nash equilibrium is then given in Section 3.

2. The model

We consider an n-player strategic game. Let I = {1, 2, . . . , n}
be a set of all players. For each i ∈ I , let Ai be a finite action
set of player i and its generic element is denoted by ai. A vector
a = (a1, a2, . . . , an) denotes an action profile of the game. Let
A = ×

n
i=1Ai be the set of all action profiles of the game. Denote,

A−i = ×
n
j=1;j≠iAj, and a−i ∈ A−i is a vector of actions aj, j ≠ i. The

action set Ai of player i is also called the set of pure strategies of
player i. Amixed strategy of a player is represented by a probability
distribution over his action set. For each i ∈ I , let Xi be the
set of mixed strategies of player i, i.e., the set of all probability
distributions over the action set Ai. A mixed strategy τi ∈ Xi is
represented by τi = (τi(ai))ai∈Ai , where τi(ai) ≥ 0 is a probability
with which player i chooses an action ai and


ai∈Ai

τi(ai) = 1. Let

X = ×
n
i=1Xi be the set of all mixed strategy profiles of the game

and its element is denoted by τ = (τi)i∈I . DenoteX−i = ×
n
j=1;j≠iXj,

and τ−i ∈ X−i is a vector of mixed strategies τj, j ≠ i. We define
(νi, τ−i) to be a strategy profile where player i uses strategy νi and
each player j, j ≠ i, uses strategy τj. Let r̃i =


r̃i(a)


a∈A be a payoff

vector of player iwhose components are real numbers. Specifically,
player i gets payoff r̃i(a) ∈ R at action profile a. For such games,
Nash [18] showed that there always exists a Nash equilibrium in
mixed strategies.

In real life applications, the players’ payoffs may be random
due to uncertainty caused by various external factors. Therefore,
we consider the case where the payoffs of each player are random
variables and follow a certain distribution. We denote the random
payoff vector by r̃w

i =

r̃w
i (a)


a∈A, where w is an uncertainty

parameter. Let (Ω, F , P) be a probability space. Then, for each
i ∈ I , we can think of the random payoff vector r̃w

i as a function
r̃w
i : Ω → R|A| as follows r̃w

i (ω) =

r̃w
i (a, ω)


a∈A ∈ R|A|; |A| is the

cardinality of set A. At action profile a ∈ A, r̃w
i (a, ω) is the realized

random payoff of player i. Then, for a given mixed strategy profile
τ ∈ X and an ω ∈ Ω , the realized random payoff of player i, i ∈ I ,
is defined by,

rw
i (τ , ω) =


a∈A

n
j=1

τj(aj)r̃w
i (a, ω). (2.1)

The random payoff rw
i (τ ) defined by (2.1) is a univariate random

variable for all τ ∈ X , and it is a linear combination of the
components of the random payoff vector (r̃w

i (a))a∈A. We assume
that each player uses satisficing payoff criterion where the payoff
function of each player is defined using a chance constraint. At
strategy profile τ ∈ X , the payoff of each player is the highest
level of his payoff that he can attain with at least a specified level
of confidence. The confidence level of each player is given a priori
and it is known to other players. Let αi ∈ [0, 1] be the confidence
level of player i and α = (αi)i∈I be a confidence level vector. For a
given strategy profile τ ∈ X , and a given confidence level vector α
the payoff function of player i, i ∈ I , is given by

uαi
i (τ ) = sup


γ |P


{ω|rw

i (τ , ω) ≥ γ }


≥ αi

. (2.2)

We assume that the probability distributions of the payoffs of
each player are known to all the players. Then, for a given α ∈

[0, 1]n, the payoff function of a player defined by (2.2) is known
to all the players. That is, for a given α ∈ [0, 1]n, the above chance-
constrained game is a non-cooperative game with complete
information. The set of best response strategies of player i, i ∈ I ,
against a given strategy profile τ−i of other players is given by

BRαi
i (τ−i) =


τ̄i ∈ Xi|u

αi
i (τ̄i, τ−i) ≥ uαi

i (τi, τ−i), ∀ τi ∈ Xi

.

Next, we give the definition of Nash equilibrium.

Definition 2.1 (Nash Equilibrium). A strategy profile τ ∗
∈ X is said

to be a Nash equilibrium of a chance-constrained game for a given
α ∈ [0, 1]n, if for all i ∈ I , the following inequality holds,

uαi
i (τ ∗

i , τ ∗

−i) ≥ uαi
i (τi, τ

∗

−i), ∀ τi ∈ Xi.

That is, τ ∗ is a Nash equilibrium if and only if τ ∗

i ∈ BRαi
i (τ ∗

−i) for all
i ∈ I .

3. Existence of Nash equilibrium

Weassume that the payoffs of each player are random variables
following a certain distribution. We consider various cases and
show the existence of a mixed strategy Nash equilibrium of
chance-constrained game for different values of α.

3.1. Payoffs following normal/Cauchy distribution

For a given strategy profile τ ∈ X , the probability distribution
of random payoff rw

i (τ ), i ∈ I , plays an important role in defin-
ing the payoff function of player i given by (2.2). For each i ∈ I ,
rw
i (τ ) is a linear combination of the components of the random
payoff vector (r̃w

i (a))a∈A.We consider the probability distributions,
for the components of the random payoff vector (r̃w

i (a))a∈A, that
are closed under the linear combination. It is well known that the
independent random variables following normal or Cauchy dis-
tributions possess this property [12]. We first consider the case
where for each i ∈ I , {r̃w

i (a)}a∈A are independent normal random
variables, where the mean and variance of r̃w

i (a) are µi(a) and
σ 2
i (a) respectively. Then, for τ ∈ X , rw

i (τ ) follows a normal dis-
tribution with mean µ̄i(τ ) =


a∈A

n
j=1 τj(aj)µi(a) and variance

σ̄ 2
i (τ ) =


a∈A

n
j=1 τ 2

j (aj)σ 2
i (a), and ZN

i =
rwi (τ )−µ̄i(τ )

σ̄i(τ )
follows a

standard normal distribution. Let F−1
ZNi

(·), i ∈ I , be a quantile func-

tion of a standard normal distribution. From (2.2), for a given τ ∈ X
and α, we have,

uαi
i (τ ) = sup


γ |P


{ω|rw

i (τ , ω) ≥ γ }


≥ αi


= sup

γ |P


ZN
i ≤

γ − µ̄i(τ )

σ̄i(τ )


≤ 1 − αi


= µ̄i(τ ) + σ̄i(τ )F−1

ZNi
(1 − αi).
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