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a b s t r a c t

We formulate a linear programwhose optimal objective function value can be used in other formulations
to yield improved upper and lower bounds on the probability of the union of events if we know some
empty intersections of small numbers of events. The LP relaxation of an extension of the maximum
independent set problem provides an upper bound on the largest number of events that have a nonempty
intersection. We present numerical experiments demonstrating the effectiveness of our formulation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Computing the probability of the union of events is important
in reliability theory, stochastic programming, and other sciences
concernedwith stochastic systems. In network reliability, consider
a communication network with nodes and links, each with a
probability of failure. The two-terminal reliability of a pair of nodes
is the probability of the union of events, each ofwhich occurswhen
a path between the two nodes consists of links without failure.
The all-terminal reliability is the probability of the union of events,
each of which occurs when a spanning tree of the network consists
of links without failure. In probabilistic constrained stochastic
programming, a joint probabilistic constraint for random variables
ξ1, . . . , ξn specifies a lower bound on P(ξ1 ≤ x1 ∩ · · ·∩ ξn ≤ xn) =

1 − P(ξ1 > x1 ∪ · · · ∪ ξn > xn), which involves the probability
of the union of events. Although it is very hard to compute the
exact probability of the union of a large number of events, we can
compute its approximation by using the probabilities of individual
events and intersections of a small number of events.

Let {A1, . . . , An} be any set of n (∈ Z>0) events in an arbitrary
probability space and

N := {1, . . . , n}

be the set of all positive integers at most n. For any finite set I , we
designate its cardinality (i.e., the number of elements in I) by |I|.
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For any subset I ⊆ N , we introduce a notation for the probability
of the intersection of events Ai for all i ∈ I as follows:

pI := P


j∈I

Aj


.

We introduce binomial moments Si for all i ∈ N as follows:

Si :=


I⊆N: |I|=i

pI . (1)

Let ν denote the random number of events among A1 . . . , An that
occur. Then we have the following relation for all i ∈ N:

E


ν

i


=

n
j=0


j
i


P(ν = j) = Si,

where we employ the extended definition of binomial coefficients,
in which

j
i


= 0 for all i, j ∈ Z≥0 such that i > j. The value Si is

called the ith binomial moment of ν.
The classical inclusion–exclusion principle [10] (see also

Prékopa [21]) gives the probability of the union of events by using
binomial moments Si for all i ∈ N as follows:

P(A1 ∪ · · · ∪ An) = S1 − S2 + · · · + (−1)n−1Sn. (2)

However, this formula is impractical if the number of events n is
large, in which case the calculation of Si is intractable unless i is
small enough (close to 1) or large enough (close to n) since we
need

n
i


sums in (1). We can still calculate Si for a few small i and

compute lower and upper bounds on the probability. Letm ∈ N be
the largest number of events the probability of whose intersection
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is used in approximating the probability of the union and

M := {1, . . . ,m}

be the set of all positive integers at most m; we use only pI for all
I ⊆ N such that |I| ∈ M , from which S1, . . . , Sm can be calculated
by (1). In practice, we usually consider a small m ≪ n, mostly
such as m = 2, 3, 4. The well-known Bonferroni inequalities (or
bounds) [2] state that for anym ∈ N ,

P(A1 ∪ · · · ∪ An)
≥

≤


S1 − S2 + · · · + (−1)m−1Sm


ifm is even
ifm is odd.

These bounds are usually very weak, often out of [0, 1]. Then the
best possible (also called sharp) bounds using S1, . . . , Sm for a small
m have been found. In the case m = 2, the sharp lower and upper
bounds expressed as closed forms in terms of n, S1, S2 are obtained
by Dawson and Sankoff [8] and Kwerel [15], respectively (see also
Prékopa [18] and Boros and Prékopa [3]). In the case m = 3, the
sharp bounds expressed as closed forms in terms of n, S1, S2, S3 are
obtained by Boros and Prékopa [3]. In the case m = 4, the sharp
upper bound expressed as a closed form in terms of n, S1, S2, S3, S4
is obtained by Boros and Prékopa [3]. For a generalm, Prékopa [18]
observed that all these sharp bounds are optimal objective function
values of certain linear programs, known as binomial moment
problems. Furthermore, sharp bounds on the probabilities that
exactly/at least r events occur are given in Prékopa [19], and
the bounds on the probabilities and expectations of convex
functions of discrete random variables are given in Prékopa [20]. A
binomial moment Si carries an aggregated information over event
probabilities pI , using every one of which without aggregation
we can obtain better bounds. Hailperin [14] formulated linear
programs with an exponential number of variables, known as
Boolean probability bounding problems, which give sharp bounds
using disaggregated event probabilities.

A pair of binomialmoment problems (also called the aggregated
LP problems, for probability bounds of the union of events) is
formulated as follows [18]:

min/max

j∈N

xj

subject to

j∈N


j
i


xj = Si for i ∈ M

xj ≥ 0 for j ∈ N.

(3)

The optimal objective function values of these minimization and
maximization problems are the sharp lower and upper bounds,
respectively, on the probability of the union of n events that can be
computed using only the aggregated information Si for all i ∈ M .

A pair of Booleanprobability bounding problems (also called the
disaggregated LP problems, for probability bounds of the union of
events) is formulated as follows [14]:

min/max


J⊆N: | J|∈N

xJ

subject to


J⊆N: | J|∈N

aIJxJ = pI for I ⊆ N : |I| ∈ M

xJ ≥ 0 for J ⊆ N : | J| ∈ N,

(4a)

where we define

aIJ :=


1 if I ⊆ J
0 otherwise. (4b)

The optimal objective function values of these minimization and
maximization problems are the sharp lower and upper bounds,

respectively, on the probability of the union of n events that can be
computed using only the disaggregated information pI for all I ⊆ N
such that |I| ∈ M . Since such a set of event probabilities is almost
always the most detailed information we can use, the bounds are
the best possible we can expect in general. These problems are,
however, impractical owing to an exponential number (2n

− 1) of
the decision variables xJ .

Although we cannot solve the disaggregated LP problems
for a large number of events n in practice, we may extract
useful information from disaggregated event probabilities without
dealing with an exponential size and use it with their aggregations
to obtain improved bounds.

2. Improved bounds

We assume that all probabilities of intersections of small
numbers of events (formally, pI for all I ⊆ N such that |I| ∈

M ⊂ N) are known and some of them are 0 (i.e., such intersections
are empty). The smallest number of events that have an empty
intersection is 2 sincewemayuse only nonempty individual events
when computing their union; hence, we assume that m ≥ 2. For
any nonempty subsets I, J ⊆ N such that I ⊆ J and any ε ∈ [0, 1],
we have the implication pI ≤ ε =⇒ pJ ≤ ε. In particular when
ε = 0, we have the following implication:

pI = 0 =⇒ pJ = 0,

which suggests thatwe are likely to havemore empty intersections
of a larger number of events even if we have a few empty
intersections of small numbers of events; if at least one intersection
is empty, then the intersection of the largest number of events is
empty (i.e., pN = 0, where |N| = n). Therefore, there exists the
largest number r ∈ {1, . . . , n− 1} of events that have a nonempty
intersection; all intersections of a larger number of events are
empty (i.e., pI = 0 for all I such that |I| ∈ {r + 1, . . . , n}). We
want to find r , but since it is impossible to find the exact number
with known limited information about event probabilities, we find
an upper bound on it instead.

First, we consider the casem = 2 for ease of understanding.We
can find the sharp upper bound by solving the maximum indepen-
dent set problem as follows. Consider a simple graph G = (V , E)
of n = |V | vertices corresponding to n events A1, . . . , An, respec-
tively. The graph G has an edge between two distinct vertices i, j ∈

V if and only if the intersection of the corresponding two events is
empty: (i, j) ∈ E ⇐⇒ P(Ai ∩ Aj) = 0. An independent set (also
known as a stable set) is a subset of V that has no edge between its
vertices. The size of an independent set is the number of vertices in
it. Themaximum independent set problem is to find a largest inde-
pendent set for a given undirected graph. Thus, the intersection of
the events corresponding to the vertices in any larger subset than a
maximum independent set is empty since the subset must contain
a pair of connected vertices. The intersection of the events corre-
sponding to the vertices in a maximum independent set could be
empty or nonempty although all pairwise intersections of events
are nonempty. Therefore, the size of a maximum independent set
is the sharp upper bound knowing only all probabilities of individ-
ual and pairwise intersections of events. The problem is N P-hard,
so it is unlikely that we can find the exact solution efficiently. In-
stead, we can solve the following LP relaxation efficiently:

maximize

j∈V

xj

subject to xi + xj ≤ 1 for (i, j) ∈ E,

0 ≤ xj ≤ 1 for j ∈ V .

Now, we consider the general case m ≥ 2, forgetting about the
graph representation but thinking of extending the mathematical
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