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a b s t r a c t

In the framework of multi-choice games, we propose a dynamic process leading to the core which was
introduced by van den Nouweland et al. (1995). Also, we prove that it converges if and only if the core is
nonempty.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The core of TU-games (games with transferable utility) was
introduced by Gillies [5] in 1953. Subsequently, in 1998, Cesco [3]
provided a transfer scheme leading to the nonempty core of a TU-
game. Also he proved that such a transfer scheme converges if
and only if the core of a TU-game is nonempty. In the literature,
the core of multi-choice games was first introduced by van den
Nouweland et al. [11]. This raises the question whether the
result of Cesco [3] extends to multi-choice games. The answer is
positive. The aim of this note is to describe a model of dynamic
bargaining that converges to the core for multi-choice games.
Also, such a transfer scheme converges if and only if the core
of a multi-choice game is nonempty. In the framework of TU
games, related results may be found in Stearns [10], Justman [6],
Maschler and Owen [7], and so on. Stearns [10] described two
transfer scheme that converges to the kernel [4] and the bargaining
set [1], respectively. Justman [6] provided a transfer scheme that
converges to the nucleolus [8]. Maschler and Owen [7] described a
dynamic process that converges to the Shapley value.

As Cesco [3] pointed out that Bondareva [2] and Shapley [9] used
the duality theorem in linear programming to prove that the core
of a TU-game is nonempty if and only if the game is balanced. But,
Cesco did not use the linear programming method. Cesco proved
that a transfer scheme converges if and only if the core of a TU-
game is nonempty. Similarly, van den Nouweland et al. [11] used
the duality theorem to prove that the core of a multi-choice game
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is nonempty if and only if the game is balanced. But our proof does
not use it.

The paper is organized as follows. In Section 2, we introduce the
definitions and some notations. In Section 3, we present a transfer
scheme and prove the convergence result. Also, we provide an
algorithm for our convergence result. In Section 4, we provide a
solid discussion.

2. Definitions and notations

Let N = {1, 2, . . . , n} be a set of players and for i ∈ N , let
Mi = {0, 1, 2, . . . ,mi} be an action set of player i which means
player i has mi activity levels at which he or she can play, where
the action 0 means a player does not participate, here we denote
Mi \ {0} as M+

i . The set of action vectors is denoted by


i∈N Mi =

{(ρ1, . . . , ρn) : ρi ∈ Mi for all i ∈ N}, where ρ = (ρ1, . . . , ρn) is
called an action vector of N .

For convenience, we assume mi = m for all i ∈ N . A multi-
choice game is a triple (N,m, v), where N is a set of players,m ∈ N
is the number of activity levels for all players, and v :


i∈N Mi → R

is the characteristic function satisfying v(θ) = 0, where θ denotes
the zero vector inRN . For S ⊆ N , let eS be the vector inRN satisfying
eSi = 0 if i ∉ S and eSi = 1 if i ∈ S. In this note, without
loss of generality, we assume that v is zero–one normalized, i.e.,
v(meN) = 1 and v(je{i}) = 0 for all i ∈ N and j ∈ M+

i . And if there
is no confusion we will denote (N,m, v) by v.

Let v be a game, we denote L(v) = {(i, j) : i ∈ N, j ∈ M+

i },
and x = (xij)i∈N,j∈M+

i
∈ RL(v) be a payoff configuration, where xij

denotes the increase in payoff to player i corresponding to a change
of activity from level j − 1 to level j by this player, following van
den Nouweland et al. [11]. For any ρ = (ρ1, . . . , ρn) ∈


i∈N Mi,

http://dx.doi.org/10.1016/j.orl.2015.11.006
0167-6377/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2015.11.006
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2015.11.006&domain=pdf
mailto:yahwang@mail.ndhu.edu.tw
mailto:610211001@ems.ndhu.edu.tw
http://dx.doi.org/10.1016/j.orl.2015.11.006


Y.-A. Hwang, R.-X. Liao / Operations Research Letters 44 (2016) 50–53 51

denote Sρ = {i ∈ N : ρi ≠ 0}, LSρ (v) = {(i, j) : i ∈ Sρ, 1 ≤ j ≤ ρi}

and x(ρ) =


i∈Sρ

ρi
j=1 xij. For F ⊂ L(v) with F ≠ ∅ and F ≠ L(v),

let βF be the payoff configuration in RL(v) satisfying (βF )ij =
1
|F |

if
(i, j) ∈ F and (βF )ij =

−1
|F c | if (i, j) ∉ F , i.e.

βF =
1F

|F |
−

1F c

|F c |
,

where F c denotes the complement of F in L(v), |F | and |F c
|

denote the cardinality of F and F c , respectively. 1F is the payoff
configuration in RL(v) defined by (1F )ij = 1 if (i, j) ∈ F and 0,
otherwise.

Remark 2.1. Since F is finite, it follows that there are two positive
constants k and K such that k ≤ ∥βF∥2 ≤ K .

Let v be a game. The pre-imputation set of v is defined by

E(v) =


x = (xij)i∈N,j∈M+

i
: x(meN) =


i∈N

m
j=1

xij = 1

.

Let v be a game, ρ = (ρ1, . . . , ρn) ∈


i∈N Mi, and x ∈ E(v). We
define the excess function of ρ in x for v by
e(ρ, x, v) = v(ρ) − x(ρ).

The core of multi-choice games is defined by van den
Nouweland et al. [11] as follows.

Definition 2.2. Let v be a game. The core C(v) of the game v
consists of all x ∈ E(v) that satisfy e(ρ, x, v) ≤ 0 for all ρ ∈

i∈N Mi, i.e.

C(v) =


x ∈ E(v) : e(ρ, x, v) ≤ 0 for all ρ ∈


i∈N

Mi


.

3. Transfer scheme and convergence result

In this section, we present a transfer scheme in the setting of
multi-choice games, and prove that the maximal transfer scheme
converges if and only if the core is nonempty. First, we present a
transfer and a transfer scheme in the setting ofmulti-choice games
as follows.

Let v be a game, x be an arbitrary payoff configuration in E(v), ρ
be an action vector in


i∈N Mi \ {θ,meN} and e(ρ, x, v) ≥ 0, then

we use the following terminologies:
1. y is said to result from x by a transfer of size e(ρ, x, v) from

[LSρ (v)]c to LSρ (v) if

y = x + e(ρ, x, v)βLSρ (v)

= x + e(ρ, x, v)

 1LSρ (v)

|LSρ (v)|
−

1[LSρ (v)]c

|[LSρ (v)]c |


.

2. A transfer scheme is a sequence {xr}∞r=1 with xr+1 is resulted
from xr by a transfer of size e(ρr , xr , v) from [LSρr (v)]c to
LSρr (v), i.e.,

xr+1
= xr + e(ρr , xr , v)βLSρr (v)

= xr + e(ρr , xr , v)


1LSρr (v)

|LSρr (v)|
−

1[LSρr (v)]c

|[LSρr (v)]c |


for all r ≥ 1.

3. A transfer scheme {xr}∞r=1 is said to be maximal if

e(ρr , xr , v) = max{e(ρ, xr , v) : e(ρ, xr , v) ≥ 0 for all ρ}

for all r ≥ 1.

In fact, a payoff configuration x = (xij)i∈N,j∈M+

i
in RL(v) is a

matrix in Rn×m exactly. For convenience, in the following proofs,

Fig. 1. A right triangle.

we will regard a payoff configuration x as a vector
(x11, x12, . . . , x1m, x21, x22, . . . , x2m, x31, . . . , x3m,

x41, . . . , x4m, . . . , xn1, . . . , xnm).

The inner product of two vectors x and y is denoted by ⟨x, y⟩, and
two vectors x and y are orthogonal if ⟨x, y⟩ = 0.

Lemma 3.1. Let v be a game and ρ ∈


i∈N Mi \ {θ,meN}. Then
βLSρ (v) is orthogonal to the affine submanifold

Eρ(v) =


x ∈ E(v) : e(ρ, x, v) = 0


.

Proof. Let x, y ∈ Eρ(v). Then

⟨βLSρ (v), x − y⟩ =


i∈Sρ

ρi
j=1

xij −

i∈Sρ

ρi
j=1

yij

|LSρ (v)|

−


i∈Sρ

m
j=ρi+1

xij −

i∈Sρ

m
j=ρi+1

yij

|[LSρ (v)]c |
.

Since x, y ∈ Eρ(v), by e(ρ, x, v) = e(ρ, y, v) = 0 and x, y ∈

E(v), we have
i∈Sρ

ρi
j=1

xij =


i∈Sρ

ρi
j=1

yij = v(ρ) and


i∈Sρ

m
j=ρi+1

xij =


i∈Sρ

m
j=ρi+1

yij = 1 − v(ρ), respectively.

Hence ⟨βLSρ (v), x − y⟩ = 0. �

Lemma 3.2. Let v be a game with nonempty core C(v). Let x ∈

E(v) and ρ be an action vector with e(ρ, x, v) > 0. If y = x +

e(ρ, x, v)βLSρ (v), then ∥y − z∥2 < ∥x − z∥2 for all z ∈ C(v).

Proof. Clearly, y ∈ Eρ(v). Let z ∈ C(v), then e(ρ, z, v) ≤ 0. Since
e(ρ, x, v) > 0 and e(ρ, z, v) ≤ 0, by definition of Eρ(v) (as in
Lemma 3.1), Eρ(v) is a separating linear submanifold for x and z.
By y = x + e(ρ, x, v)βLSρ (v), then y − x = e(ρ, x, v)βLSρ (v), hence
y − x is orthogonal to Eρ(v) by Lemma 3.1. Next, we will show
∥y − z∥2 < ∥x − z∥2 by the property of ‘‘longer side has larger
opposite angle’’. Two cases could be distinguished:

case (1): when z ∈ Eρ(v):
Since y−x is orthogonal to Eρ(v), this implies that x, y, z form a

trianglewith right angle at y(see Fig. 1). Hence ∥y−z∥2 < ∥x−z∥2.
case (2): when z ∉ Eρ(v):
In this case, x, y, z form a line (see Fig. 2) or a triangle with

obtuse angle at y (see Fig. 3). Hence, ∥y − z∥2 < ∥x − z∥2. �

The following theorem shows the part of ‘‘only if’’ in our main
result.

Theorem 3.3. Let v be a game. If every maximal transfer scheme
converges to a point x ∈ Rn×m, then x belongs to the core C(v), i.e., the
core C(v) is nonempty.
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