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a b s t r a c t

In this paper, we introduce the randomized network interdiction problem that allows the interdictor to
use randomness to select arcs to be removed. We model the problem in two different ways: arc-based
and path-based formulations, depending on whether flows are defined on arcs or paths, respectively. We
present insights into the modeling power, complexity, and approximability of both formulations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Network flows have applications in a wide variety of contexts
(see, e.g., [1]). In some applications, it is useful to consider the
perspective of someone who wants to restrict flows in a network.
For example, law enforcement wants to inhibit the flow of illegal
drugs. Water management experts want to control flows to avoid
floods. Health agencies need to protect against contagion. Here,
it is important to consider the problem of limiting flows in the
network from the perspective of an interdictor, who is capable
of limiting capacity in arcs or eliminating arcs. Such problems
have been applied in many application areas such as military
planning [21], controlling infections in a hospital [3], controlling
floods [15], protecting critical infrastructures [13,18], and drug
interdiction [19].

Motivated by the above mentioned applications, network
interdiction problems have been well studied in the literature (see,
e.g., [4,7,9–11,16,17,23]). In this paper, we focus on the basicmodel
of network interdiction, where the interdiction of an arc requires
exactly one unit of resource: a flow player attempts to maximize
the amount ofmaterial transported through a capacitated network,
while an interdictor tries to limit the flow player’s achievable value
by interdicting a certain number, say Γ , of arcs. This problem
is also known as the Γ -most vital arcs problem (see, e.g., [15]).
Wollmer [22] presents a polynomial time algorithm for solving
this problem on planar graphs. On general networks, Wood [23]
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and Phillips [14] independently show that the problem is strongly
NP-complete. Burch et al. [6] develop approximation algorithms
for general instances of the network interdiction problem. In
particular, they consider the case where each arc has a removal
cost and its capacity can be reduced partially or completely, and
there is a limited budget to attack the network and reduce the arc
capacities. They provide a polynomial-time algorithm, based on a
linear relaxation of an integer optimization formulation, that leads
to either an approximation or pseudo-approximation result for the
resulting problem.

Network interdiction can be viewed as a game between the in-
terdictor and the flow player. This problem assumes the interdic-
tor moves first and then the flow player determines a maximum
flow in the remaining network. A closely related problem arises
when a flow must be routed before arcs are removed. In this case,
the flow player might be interested to find solutions which are
robust against any failure of arcs. Aneja et al. [2] study this prob-
lem in a path-based formulation and show that the resulting prob-
lem is solvable in polynomial-time for the special case of Γ = 1.
This problemwas further expanded to an arc-based formulation by
Bertsimas et al. [5],who introduce the concepts of robust and adap-
tive maximum flows. They establish structural and computational
results for both the robust and adaptive maximum flow problems
and their corresponding minimum cut problems.
Our contribution. The network interdiction problem addresses a
minimax objective against a flow player, which selects adaptively
a flow after observing the removed arcs. This problem requires
the interdictor to choose a specific pure strategy. We propose
a new modeling framework that permits the interdictor to use
randomness to choose arcs. More precisely, the interdictor assigns
a probability to each pure strategy and selects a pure strategy
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randomly according to these probabilities.We refer to the resulting
problem as the randomized network interdiction problem. This
provides a more realistic model for various applications such as
protecting critical infrastructures against terrorism or enemy’s
attacks. We also consider a further modification that requires the
flow player to send flow on paths, rather than the more typical
arc-based model. We present results on the modeling power,
complexity, and approximability of both arc-based and path-based
formulations. In particular, we prove that ZNI/ZRNI ≤ Γ + 1,
ZNI/ZPath

RNI ≤ Γ + 1, ZRNI/ZPath
RNI ≤ Γ , where ZNI, ZRNI, and ZPath

RNI
are the optimal values of the network interdiction problem and
its randomized versions in arc-based and path-based formulations,
respectively.We also show that these bounds are tight. Further, we
provide a (Γ + 1)-approximation for ZNI, a Γ -approximation for
ZRNI, and a


1+⌊Γ /2⌋ · ⌈Γ /2⌉/(Γ + 1)


-approximation for ZPath

RNI .

2. Network interdiction

Let G = (V , E) be a directed graphwith node set V and arc set E.
Each arc e ∈ E has a capacity ue ∈ R+ setting an upper bound
on the amount of flow on arc e. There are two specific nodes, a
source s and a sink t . W denote an arc e from a node v to a node
w by e := (v, w). We use δ+(v) := {(v, w) ∈ E | w ∈ V } and
δ−(v) := {(w, v) ∈ E | w ∈ V } to denote the sets of arcs leaving
node v and entering node v, respectively. We assume without loss
of generality that there are no arcs into s and no arcs out of t , that
is, δ−(s) = δ+(t) = ∅.

2.1. Arc-based formulation

An s-t-flow (or simply a flow) x is a function x : E → R+ which
assigns a nonnegative value to each arc so that xe ≤ ue for each
e ∈ E, and in addition for each node v ∈ V \ {s, t}, the following
flow conservation constraint holds:
e∈δ−(v)

xe −


e∈δ+(v)

xe = 0.

We refer to xe as the flow on arc e. We denote the set of all s-t-flows
by X. The value Val(x) of an s-t flow x is the net flow into t , that is,
Val(x) :=


e∈δ−(t) xe. In themaximum flow problem (also referred

to as the nominal problem), we seek an s-t flow x with maximum
value Val(x).

We next assume that there is an interdictor, who wants to
reduce the capacity of the network. Suppose that the interdictor
is able to eliminate Γ (1 ≤ Γ ≤ |E|) arcs in the network. The
network interdiction problem is to find the Γ arcs whose removal
from the network minimizes the maximum amount of flow that
can be sent to the sink. To formulate this problem, we let

Ω :=


µ = (µe)e∈E ∈ {0, 1}|E|

|


e∈E

µe = Γ


denote the set of all possible scenarios, that is, the set of all subsets
of Γ arcs. The binary variable µe indicates whether or not arc e
is to be removed, depending on whether µe = 1 or µe = 0,
respectively. Givenµ ∈ Ω , we denote by E(µ) := {e ∈ E | µe = 1}
the set of removed arcs and by F(µ) := {e ∈ E | µe = 0} the set
of available arcs after removing the arcs in the scenario µ. We also
denote by G(µ) = (V , F(µ)) a network with arc set F(µ).

The network interdiction problem is formulated as

ZNI := min
µ∈Ω

max Val(x)

s.t. x ∈ X,
xe = 0 ∀e ∈ E(µ).

(1)

This problemdetermines the interdictor’s best choice, assuming
the flow player is in a position to select a maximum flow after

Fig. 1. Illustration of the difference between the network interdiction problem and
maximum adaptive flow problem. The numbers on the arcs indicate the capacities.
We have ZNI = K + 1 − Γ , while ZADP =

5K
2(Γ +1) .

observing the removed arcs. In many applications, the flow player
has to make a decision before the interdictor selects her strategy.
Here, the flow player might be interested in those solutions that
are robust against any possible scenario. This leads to the following
problem, referred to as the adaptive maximum flow problem:

ZADP := max
x∈X

min
µ∈Ω

f (µ, x), (2)

where f (µ, x) is themaximum amount of flow that the flow player
can push through the networkwith respect to the flow x if scenario
µ is selected. Mathematically, the function f is given by

f (µ, x) := max Val(y)

s.t.
y ∈ X,

0 ≤ ye ≤ xe ∀e ∈ F(µ)
ye = 0 ∀e ∈ E(µ).

(3)

This problem is introduced by Bertsimas et al. [5], who establish
structural properties and complexity results for the problem. In
particular, they show that the adaptive maximum flow problem is
NP-hard using a reduction from the network interdiction problem.

Note that ZADP ≤ ZNI. This follows from the fact that Problem
(1) is equivalent to

ZNI = min
µ∈Ω

max
x∈X

f (µ, x). (4)

To compare the difference between the network interdiction
problem and the adaptive maximum flow problem, we consider
a network with three nodes s, v, and t as shown in Fig. 1. There are
K arcswith unit capacity and one arcwith capacity 3/2K from s to t
and there areΓ +1 arcswith infinite capacity from v to t . LetΓ ≥ 2
and K be enough large. It is easy to see that ZNI = K +1−Γ , while
ZADP =

5K
2(Γ +1) . Hence, ZNI/ZADP =

2(Γ +1)(K+1−Γ )

5K , and the ratio
becomes close to 2(Γ + 1)/5 when K gets large. An interesting
question is: How large can ZNI/ZADP be in general? We will show
later that this ratio is bounded by Γ + 1 and this bound is tight.

2.2. Path-based formulation

So far, we have considered flows in an arc-based formulation.
We next focus on an alternative formulation of flows, in which the
flow playermust specify paths onwhich to route thematerial. This
leads to a different model for the adaptive problem.

Let P denote the set of all s-t-paths (i.e., paths from s to t). For
P ∈ P , we write e ∈ P to indicate that arc e ∈ E lies on P . An
s-t-(path-based) flow is a function x : P → R+ that assigns a
nonnegative value to each path so that the total flow on each arc
does not exceed the capacity of the arc, that is,
P∈P :e∈P

xP ≤ ue ∀e ∈ E.

The value of x is the sum of the flows on the paths, i.e., Val(x) =
P∈P xP . We use XP to denote the set of all s-t-path-based flows.
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