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a b s t r a c t

Information about queue length is an important parameter for customers who face the decision whether
to join a queue or not. In this paper, we study how optimal information disclosure policies can be used by
a service provider of anM/M/1 queue to increase its revenue. Our main contribution is showing that the
intuitive policy of informing customers about the current queue length when it is short and hiding this
information when it is long is never optimal.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The literature on the strategic behavior of customers in
queues is traditionally divided into the classical observable and
unobservable queues. In the former case, introduced by Naor [8],
customers are informed about the current queue length before
deciding whether to join or balk. In the latter case, introduced
by Edelson and Hilderbrand [2], customers make their decisions
based on statistical information (e.g., the queue parameters). In
both cases, customers behave strategically and join the queue only
if their expected waiting cost is smaller than the reward obtained
upon being served.

The goal of this work is to find out whether there are
situations where the service provider can increase its revenue by
combining those two frameworks. In particular, we are interested
in studying policies where the provider shares information with
some customers and hides it from others, depending on the actual
queue length. We assume that the service provider has a fixed
income from each customer that joins the queue. Thus, in order to
maximize its revenue, the provider should maximize the effective
arrival rate, which is the rate of customers that join the queue, or
equivalently, minimize the idle period of its system.

We compare between the outcomes of the following three
policies: (i) always inform customers about the queue length;
(ii) never inform customers about the queue length; (iii) inform
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customers based on a threshold policy in which queue length
information is provided when the queue length is below the
specified threshold and is hidden otherwise. Although the third
policy seems intuitive,we formally prove that, in any setting, either
sharing informationwith all customers or hiding information from
all customers always yields greater expected revenue.

The rest of the paper is structured as follows. In Section 2, we
discuss related works. In Section 3, we formally define the model.
In Section 4, we find the equilibrium structure of a game with
threshold information policy. In Section 5, we compare between
the outcomes of the three policies. In Section 6, we prove our main
result.

2. Related works

Information disclosure plays a key factor in customers’ behavior
at call centers. For a recent review of call center theory with many
references in the role of information on the balking behavior of
customers see [1]. The authors of [9] give examples of queueing
systems providing on-line queue length information, including
emergency rooms in hospitals, voting locations, security gates
at international airports and amusements parks. Most of these
systems assume that providing queue-length helps customers to
optimize their expected payoffs.

Both [10,4] compare between the outcomes of observable and
unobservable M/M/1 queues. It is shown that each model can
outperform the other depending on the settings. In [7], the authors
consider a population with two types of customers: informed
and uninformed. The proportion of informed customers is an
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exogenous parameter of the model. They analytically characterize
the equilibrium and find that the effective incoming rate is
unimodal with respect to the fraction of informed customers. A
similar result is presented in [9], where the model assumes that
each customer follows a two-step decision process: (i) to buy or
not to buy the information about the queue; (ii) to join or not join
the queue. The characterization of an equilibrium strategy is based
on an analysis of topological properties of the expected utility sets.
The authors prove the existence and uniqueness of a symmetric
Nash equilibrium.

In our work, we adopt a control-theoretic perspective. In
particular, we are interested in finding the best information
disclosure policy that should be used by a service provider in order
to maximize its revenue. The fact that the disclosed information
is state-dependent complicates the analysis of the equilibrium.
In [6], the authors consider informed and uninformed customers,
but the latter are non-strategic and follow a determined threshold
policy. In [11], the authors consider customers’ decisions in
observable and unobservable queueing games with endogenously
determined arrivals and batch services. The equilibrium strategies
are evaluated numerically.

3. Systemmodel

We consider a standard M/M/1/ FCFS queue system. The
arrival rate is a Poisson process with mean λ. The service rate
is exponential with mean 1/µ. We denote ρ = λ/µ to be the
maximum load of the queue (recall that customers do not always
join the queue). The cost of each time unit spent at the queue
(waiting and being served) is C . Without loss of generality we set
C = 1. All customers have the same reward R from service, where
R > 1/µ (otherwise, no customer ever joins the queue).

The standard set-up in all the problems related to strategic
behavior in queueing systems [5] is that a new customer decides
to join or to balk depending on her expected sojourn time
in the queue and the reward obtained for service completion.
The behavior of a new customer is highly dependent on her
knowledge/information about the current queue length (the queue
length at the instant of her arrival). Naturally, a customer will join
the queue if and only if the expected sojourn time (which depends
on the information about the queue length provided to her) is
smaller than the reward.

We consider a state-dependent information disclosure policy,
such that the control parameter u is a mapping from the queue
length i into the interval [0, 1]. Then, the control u(i) for all i =

0, 1, . . . is the probability that the provider gives the information
to an arrival customer when there are i customers in the queue.
We only consider stationary information disclosure policies, i.e.
control policies that do not depend on time. If u(i) = 1, for all
i ≥ 0, then it is exactly the (fully) observable model presented by
Naor [8] and if u(i) = 0, for all i ≥ 0, then it is the unobservable
model presented by Edelson andHilderbrand [2]. For the rest of the
paper, the former information disclosure policy is denoted u+ and
the latter policy is denoted u−.

The provider’s objective is to maximize its revenue, generated
through the service completion. Thus, it aims to maximize the
utilization of the queue which is equivalent to minimizing the
idle stationary probability of the queue, denoted by π0. The
optimization problem for the provider is the following:

min
u∈U

πu
0 ,

where U is the set of information disclosure policies/mapping
from N to the interval [0, 1]. Based on Naor’s model, we know
that an informed customer will join if the queue length is strictly
lower than the threshold L = ⌊Rµ⌋. An uninformed customer
makes her decision based on her expected sojourn time, denoted

by WU . We assume that the uninformed customers are aware of
the policy used by the provider (this information can be obtained
by trials or via exogenous sources). Thus, an uninformed customer
can evaluate her sojourn time given the systemparameters and the
provider policy.

Getting results for all type of information disclosure policies can
be complicated. Therefore, in this paper, we restrict our analysis
to deterministic threshold information disclosure policies, which
make sense in applicative contexts. The principle of revealing the
queue length when the system is empty and not revealing it when
the system is full seems intuitive. Revealing information when the
queue is small should increase the incoming rate of customers. At
the opposite, when the system is overloaded, the providermay aim
not to scare incoming customers and give them the information
about the queue length.

4. Equilibrium analysis of threshold policies

In this section,we consider threshold policies, denoteduD(·), for
which the provider informs all customers about the queue length
if the actual queue length is below or equal some threshold D and
does not inform them otherwise, that is,

uD(i) =


1 if i ≤ D,
0 if i > D.

Since an uninformed customer knows that the queue length
is greater than D, her expected sojourn time, denoted WU(D, q),
depends on the threshold D and on the decision of the other
uninformed customers, denoted by q, where q ∈ [0, 1] represents
the probability that an uninformed customer joins the queue
(all customers are identical, hence we only consider symmetric
strategies). We denote an equilibrium solution by q∗.

If D ≥ L − 1, uninformed customers will never join the queue
as their expected sojourn times, conditioned on the fact that the
queue length is at least L, is necessarily higher than the reward R
(recall that L = ⌊Rµ⌋). Thus, the unique equilibrium is q∗

= 0 and
a threshold policy with a threshold D ≥ L − 1 is equivalent to the
observablemodel. Henceforth, we only consider threshold policies
with D ∈ {0, 1, .., L − 2} (which also means that we only consider
Rµ ≥ 2). Thus, at equilibrium, all informed customers join, while
all uninformed customers join with probability q.

The evolution of the queue length process forms aMarkov chain
with transition rate λ from state i to state i + 1 if i ≤ D and
transition rate λq otherwise. The transition rate from i to i− 1 is µ
for all i > 0. The Markov chain is illustrated in Fig. 1. This Markov
chain is a birth–death process and the stationary distribution is
given by

πi =


π0


λ

µ

i

if i ≤ D + 1,

π0
λiqi−D−1

µi
if i > D + 1,

(1)

whereπi is the stationary probability that the queue length is equal
to i. The idle stationary probability (i.e., the probability that the
queue is empty) as a function of the threshold D and the joining
probability q is given by:

π0(D, q) =


D+1
i=0


λ

µ

i

+

∞
i=D+2

λiqi−D−1

µi

−1

=
(λ − µ)(λq − µ)

λ2(−1 + q)(λ/µ)D − λqµ + µ2
. (2)

Wedefineπ(i|i > D) to be the probability that the queue length
is i, given that the queue length is higher than D. Using conditional
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