
Operations Research Letters 43 (2015) 489–494

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Pseudo lower bounds for online parallel machine scheduling
Zhiyi Tan ∗, Rongqi Li
Department of Mathematics, Zhejiang University, Hangzhou 310027, PR China

a r t i c l e i n f o

Article history:
Received 6 December 2014
Received in revised form
7 July 2015
Accepted 8 July 2015
Available online 15 July 2015

Keywords:
Scheduling
Online
Competitive ratio
Lower bound

a b s t r a c t

We present pseudo lower bounds for the online scheduling problems on parallel and identical machines,
which is the infimum of the competitive ratio of an online algorithm that can be proved by using three
lower bounds on the optimum makespan. Pseudo lower bounds for fixed m machines, which match the
competitive ratio of the current best algorithm whenm = 4, 5, 6, are obtained in this paper.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider classical online scheduling problems
on parallel and identical machines. We are given a sequence J =

{J1, J2, . . . , Jn} of independent jobs with positive processing times
p1, p2, . . . , pn, which should be non-preemptively scheduled onm
identical machinesM1,M2, . . . ,Mm. The jobs arrive online in a list,
i.e., each job should be assigned to a machine before the next job
is revealed. The goal is to minimize the makespan, which is the
maximum completion time among the machines.

The quality of the performance of an online algorithm is
measured by its competitive ratio. For a job sequence J and an
algorithm A, let CA(J) denote the makespan produced by A and let
C∗(J) denote the optimal makespan. Then the competitive ratio
of A is defined as supJ{

CA(J)

C∗(J)
}. An online scheduling problem has a

lower boundρ if no online algorithmhas a competitive ratio smaller
than ρ. An online algorithm A is called optimal if its competitive
ratio matches the lower bound of the problem.

In 1966, Graham proposed the algorithm List Scheduling (LS for
short) and proved that the competitive ratio of LS is 2 −

1
m for m

machines [7]. List Scheduling simply assigns each job one by one
to the machine where it can be completed earliest. Twenty years
later, LS was proved to be the optimal algorithm for two and three
identical machines [3]. With the algorithm given by Galambos
and Woeginger in 1993 which has a smaller worst-case ratio than
that of LS for any m ≥ 4 [5], it is recognized that LS cannot be

∗ Corresponding author.
E-mail address: tanzy@zju.edu.cn (Z. Tan).

the optimal algorithm when m ≥ 4. From then on, algorithms
and lower bounds have been refined bit by bit. The current best

algorithm with competitive ratio 1 +


1+ln 2

2 ≈ 1.9201 was given
by Fleischer andWahl [4]. The current best lower bound for general
number of machines is 1.85358, which is obtained by exhaustive
search using computers [6]. When the number of machines is
small, Chen et al. [2] presented an algorithmwith competitive ratio
at most max


4m2

−3m
2m2−2

,
2(m−1)2+

√
1+2m(m−1)−1

(m−1)2+
√
1+2m(m−1)−1


. Chen et al. [2] also

gave some lower bounds, which are still the best ones for many
fixed and small values of m. For the case of m = 4, Rudin III and
Chandrasekaran [8] improved the lower bound to

√
3.

Though endless effort has been performed to design optimal
algorithms, a gap between lower bounds and competitive ratios
of online algorithms still exists, even for the case of m = 4. One
reason is the following. By the definition of the competitive ratio,
the makespan produced by an online algorithm is compared with
the optimal makespan. But when proving the competitive ratio,
themakespan produced by an online algorithm is in fact compared
with the lower bounds for the optimal makespan. All the previous
studies of online algorithms only use the following three lower
bounds for the optimummakespan [1]:

(i) The total processing time of all jobs divided bym.
(ii) The largest processing time among all jobs.
(iii) The total processing time of the (km−k+1)-st to (km+1)-st

largest jobs among all jobs, where k = 1, . . . , ⌊ n−1
m ⌋.

Taken such difference into consideration, Albers [1] introduced
a new measurement to reflect the limit when designing and
analyzing the online algorithms, which we call pseudo lower bound
in this paper. That is, the infimum that the competitive ratio of an

http://dx.doi.org/10.1016/j.orl.2015.07.002
0167-6377/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2015.07.002
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2015.07.002&domain=pdf
mailto:tanzy@zju.edu.cn
http://dx.doi.org/10.1016/j.orl.2015.07.002


490 Z. Tan, R. Li / Operations Research Letters 43 (2015) 489–494

algorithm can be proved when using certain lower bounds widely
known on the optimum. Albers [1] proved that the pseudo lower
bound of online parallel machine scheduling for general number of
machines is 1.917, which is much closer to the competitive ratio of
the current best online algorithm than the lower bound. It indicates
that to find a new lower bound of the optimummakespan is much
more urgent and essential than to design an improved algorithm.

In this paper,we adopt the idea of [1], and give the pseudo lower
bounds of online parallelmachine scheduling for fixedmmachines.
The pseudo lower bounds for m = 4, 5, 6 machines match the
competitive ratio of the current best algorithm given in [2]. It fol-
lows that as for the case of general number of machines, to obtain
optimal algorithms for small number of machines, including m =

4, also requires more involved estimation of optimummakespan.
The structure of the paper is as follows. Section 2 presents

some preliminary results. The pseudo lower bounds are proved in
Section 3.

2. Preliminaries

In this section, we will present some preliminary results which
will be used in the construction of the job sequence and proof of
the pseudo lower bound.

For any given m ≥ 4, define

f (m)
i (x) =


m − 1 − x

m

i

, i = 1, . . . ,m, (1)

and

g(m)
i (x) =

1
i


i

j=1

f (m)
j (x) − (m − 1 − mx)


, i = 1, . . . , t, (2)

where t = ⌊
m
2 ⌋. By the definition of g(m)

i (x), it is easy to see that
for any 1 ≤ i < t ,

(i + 1)g(m)
i+1(x) − ig(m)

i (x) = f (m)
i+1 (x). (3)

By the definition of f (m)
i (x), for any 1 ≤ i < m,

i
j=1

f (m)
j (x) =

m−1−x
m


1 −

m−1−x
m

i
1 −

m−1−x
m

=

m−1−x
m − f (m)

i+1 (x)
1+x
m

=
m

1 + x


m − 1 − x

m
− f (m)

i+1 (x)


. (4)

Substituting (4) into (2), we have

g(m)
i (x) =

1
i


m

1 + x


m − 1 − x

m
− f (m)

i+1 (x)


− (m − 1 − mx)


=
m

(1 + x)i


x2 − f (m)

i+1 (x)


. (5)

The following two lemmas state some basic properties of f (m)
i (x)

and g(m)
i (x).

Lemma 2.1. (i) For any 1 ≤ i ≤ m, f (m)
i (x) is a strictly decreasing

function on [0, 1],
(ii) For any 1 ≤ i ≤ t, g(m)

i (x) is a strictly increasing function on
[0, 1].

Proof. Clearly, (f (m)
i (x))′ = −

i
m

m−1−x
m

i−1
. Hence,

−1 ≤ (f (m)
i (x))′ < 0

for any 1 ≤ i ≤ m and 0 ≤ x ≤ 1. Thus

(g(m)
i (x))′ =

1
i


i

j=1

(f (m)
j (x))′ + m


≥

1
i

(−i + m) > 0

for any 1 ≤ i ≤ t and 0 ≤ x ≤ 1. The lemma follows. �

Lemma 2.2. For any 1 ≤ i ≤ t, the equation g(m)
i (x) =

1
2 has a

unique solution on
 5
7 ,

m+t
2m−t


.

Proof. Recall thatm ≥ 4. Thus

g(m)
i


5
7


=

1
i


i

j=1

f (m)
j


5
7


−


2m
7

− 1


=
1
i

 i
j=1


m −

12
7

m

j

−
2m − 7

7


<

1
i


i
7m − 12

7m
−

2m − 7
7


≤

7m − 12
7m

−
4m − 14

7m
=

3m + 2
7m

≤
1
2
.

Since g(m)
i (x) is strictly increasing and continuous, we only need to

show that g(m)
i

 m+t
2m−t


> 1

2 .
By (5),

g(m)
i


m + t
2m − t


=

m
1 +

m+t
2m−t


i


m + t
2m − t

2

− f (m)
i+1


m + t
2m − t



=
2m − t

3i

 m + t
2m − t

2

−


m − 1 −

m+t
2m−t

m

i+1


=
2m − t

3i


m + t
2m − t

2

−


1 −

3
2m − t

i+1


.

Thus g(m)
i

 m+t
2m−t


> 1

2 is equivalent to
1 −

3
2m − t

i+1

<


m + t
2m − t

2

−
3i

2(2m − t)
. (6)

It is well known that for any n ≥ 1 and 0 ≤ x ≤ 1,

(1 − x)n ≤ 1 − nx +
n(n − 1)

2
x2.

Hence,
1 −

3
2m − t

i+1

≤ 1 − (i + 1)
3

2m − t
+

i(i + 1)
2


3

2m − t

2

=
(m + t)2 + (3m2

− 6mt)
(2m − t)2

−
3i + (3i + 6)
2(2m − t)

+
9i(i + 1)

2(2m − t)2

=


m + t
2m − t

2

−
3i

2(2m − t)
+

3m2
− 6mt

(2m − t)2

−
3i + 6

2(2m − t)
+

9i(i + 1)
2(2m − t)2

.



Download English Version:

https://daneshyari.com/en/article/1142111

Download Persian Version:

https://daneshyari.com/article/1142111

Daneshyari.com

https://daneshyari.com/en/article/1142111
https://daneshyari.com/article/1142111
https://daneshyari.com

