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a b s t r a c t

We consider the problem of scheduling jobs on parallel identical machines, where only interval bounds
of processing times of jobs are known. The optimality criterion of a schedule is the total completion time.
In order to cope with the uncertainty, we consider the maximum regret objective and seek a schedule
that performs well under all possible instantiations of processing times. We show how to compute the
maximum regret, and prove that its minimization is strongly NP-hard.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Robust optimization has been applied to many combinatorial
optimization problems, since in practical applications input data
to most problems can be rarely given precisely. This is true in the
context of scheduling, as in many actual execution environments
(e.g., computer systems, transportation, manufacturing) process-
ing times of tasks are not known exactly, but their values can
fluctuate within certain bounds. Moreover, very often no good as-
sumptions can be made even regarding their probability distribu-
tions. In such circumstances we would like to find a solution that
is the best in the worst possible scenario of events. Such solutions
can be characterized in terms of the maximum regret criterion
[7,2,5]. Solutions that minimize the maximum regret are often
much more reliable than the ones obtained by ignoring parame-
ter uncertainty. However, in many cases, finding a robust solution
for uncertain data is more difficult and may require more compu-
tational resources.

We apply the minmax regret approach to the problem of
scheduling on parallel identical machines to minimize the total
completion time (sum of the completion times of all jobs) with
interval uncertainty in the job processing times. The problem un-
der consideration is denoted interval minmax regret P ∥


Ci,
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using the notation from standard scheduling theory. The deter-
ministic version of this problem can be solved in polynomial time
by applying the shortest processing time first rule [10]. However,
its minmax regret version becomes NP-hard even for a single ma-
chine, i.e., intervalminmax regret 1 ∥


Ci. In [8] it is shown that

even when themidpoints of all intervals are equal and the number
of jobs is odd, finding an optimal robust sequence on a single ma-
chine is weakly NP-hard. Surprisingly, for an even number of jobs
this problem is polynomially solvable. Thus the case in which the
number of machines is given as part of the input can be no easier.
Recently, Conde [3] indicated a simple reduction from theminmax
regret assignment problem [1] ofm jobs tommachines, which im-
plies that in case of m parallel unrelated machines (interval min-
max regret R ∥


Ci) the problem is strongly NP-hard. However,

this reduction does not suffice to prove hardness for the case of
parallel identicalmachines. In this paper, we extend the aforemen-
tioned complexity results by showing that the problem is strongly
NP-hard even on identical parallel machines.

2. Problem formulation

In the scheduling problem P ∥


Ci we are given m identical
parallel machines (processors) for processing n jobs, where each
job i has an integer processing time pi, i = 1, . . . , n. If not stated
otherwise, we assume that all pi ≥ 0. Each job has to be assigned
to exactly one machine. Let πj denote a vector of integers, where
πj(k) is the index of the job scheduled on the jth machine as the
kth to the last (jobs on each machine are scheduled starting from
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time zero and without idle times). Let nj denote the number of
elements in πj, i.e., the number of jobs assigned to machine j. The
completion time of the job scheduled as kth to the last on machine j
is Cj,k =

nj
i=k pπj(i) (Cj,k = 0 if there is no such job). The objective

is to minimize the total sum of completion times (also called the
total flow time), expressed as:

F(π) =

m
j=1

nj
k=1

Cj,k =

m
j=1

nj
k=1

kpπj(k), (1)

where π = [π1, . . . , πm] is called a schedule. We will sometimes
refer to this problem formulation as the deterministic version of the
scheduling problem.

The definition of the minmax regret version of this problem
with interval uncertainty, denoted as interval minmax regret P ∥

Ci, differs as follows. Instead of having exact processing times pi,
we are now given only intervals [p−

i , p+

i ], i = 1, . . . , n, to which
the actual processing times belong.We denote by S = [pS1, . . . , p

S
n]

any vector that satisfies p−

i ≤ pSi ≤ p+

i for all i = 1, . . . , n. Such a
vector will be called a scenario. For any schedule π and scenario
S we define the value of regret as Z(π, S) := F(π, S) − F∗(S),
where F(π, S) is the objective function (1) from the deterministic
version of the problem P ∥


Ci with input data S, and F∗(S) is

the value of an optimal solution of this problem. The objective of
interval minmax regret P ∥


Ci is to minimize over schedules

the maximum of regret over scenarios:

Z∗
= min

π
max

S


F(π, S) − F∗(S)


. (2)

The above minmax regret formulation is a robust optimization
formulation of the scheduling problem. A scheduleminimizing the
maximum regret will be called robust optimal.

3. Computation of maximum regret

The deterministic version of the considered problem is solvable
in polynomial time (see [10, Theorem 5.3.1]). An optimal schedule
can be obtained by first sorting all n jobs in order of non-decreasing
processing times, and then we assign the first unassigned job in
the list to the least loaded machine, i.e., to the machine with the
smallest current makespan. Repeating this procedure until all jobs
are assigned gives the desired schedule.

We show that for a fixed schedule π it is possible to compute
the value of maximum regret Z(π) = maxS Z(π, S) in polynomial
time. The method is analogous to the one presented in [3] for
parallel unrelated machines, with the main difference that in the
identical machines case the input data contains a single interval
[p−

i , p+

i ] instead of m intervals given in the case of unrelated
machines. Thus we omit the simple proof of correctness of
Formulas (3)–(5).

Let us encode a feasible solution π of the considered problem
in terms of binary variable x as follows: let xijk = 1 iff the ith job is
processed on the jth machine as the kth to the last.

For any feasible schedule x the maximum regret can be
computed as:

m
j=1

n
i=1

n
k=1

kp+

i xijk − min
y

m
j=1

n
i=1

n
k=1

cijk(x)yijk, (3)

where

cijk(x) = kp−

i + (p+

i − p−

i )

m
l=1

n
r=1

min{r, k}xilr . (4)

The minimization in (3) is equivalent to the minimum assignment
problem and thus can be solved in polynomial time, using e.g. the

Hungarian method [9]. Variable y is an n × (mn) permutation
matrix.

Let xij = k iff xijk = 1, and yij = k iff yijk = 1. For a fixed x, given
a solution y of the minimization in (3), the worst-case scenario can
be obtained as:

pi =

p+

i if
m
j=1

(xij − yij) ≥ 0,

p−

i otherwise.

(5)

4. Properties of optimal solutions

Denote by Z(π) the solution value of the interval minmax
regret P ∥


Ci problem for a schedule π = [π1, . . . , πm]. The

maximum regret can be written as:

Z(π) = max
S


F(π, S) − F∗(S)


= max

S

m
j=1


Fj(πj, S) − F∗

j (S)


=

m
j=1

Zj(πj).

Here Fj(πj, S) =
nj

k=1 kp
S
πj(k)

is the sum of completion times of
the jobs on machine j under scenario S, nj = |πj| is the number of
jobs assigned to machine j, F∗

j (S) is the sum of completion times
of the jobs on machine j in an optimal solution under scenario
S, and finally, Zj(πj) is the difference between Fj(πj, S) and F∗

j (S)
for a scenario S that maximizes the total regret. Let π∗ denote an
optimal robust solution, i.e., a schedule that minimizes Z .

Consider a worst-case scenario for any schedule π (see Eq. (5)).
This scenario defines an instance of the deterministic version of
the problem. An optimal solution of this deterministic problem is
called a worst-case alternative for π .

From now on, we consider only instances satisfying the
following assumption.

Assumption 1. The number of jobs n is divisible by the number of
machinesm, i.e., there exists an integer n0 > 0 such that n = m·n0.

In particular, if m|n, then any schedule has a worst-case
alternative with an equal number of jobs on each machine.
Moreover, the following is true.

Lemma 1. If m|n, then in an optimal robust schedule every machine
is assigned the same number of jobs.

Proof. Let π2 be any schedule with different number of jobs on
at least two machines. Under a fixed scenario S, there exists a
schedule π1 with an equal number of jobs on each machine,
such that F(π1, S) < F(π2, S). This follows from the fact that
we can construct π1 from π2 by performing a sequence of the
following job displacements: from the machine with the longest
schedule remove the job from the first position and insert it at
the first position on the machine with the least number of jobs
(the multipliers k in (1) of the remaining jobs are unchanged,
but the multiplier of the moved job may decrease; the last such
displacement must be performed between two machines that
differ in the number of jobs by 2, thus the multiplier of that job
decreases by 1, and the overall cost of the schedule decreases).

Let us denote by Sπ the worst-case scenario for π . Then we get:

Z(π1) = F(π1, Sπ1) − F∗(Sπ1) < F(π2, Sπ1) − F∗(Sπ1)

≤ F(π2, Sπ2) − F∗(Sπ2) = Z(π2).

The last inequality follows from the fact that Sπ1 is not
necessarily the worst-case scenario for π2, thus by definition the
value of regret Z(π2, Sπ1) is no greater than that of the maximum
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