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a b s t r a c t

We consider the one-dimensional one-center problem on uncertain data. We are given a set P of n
(weighted) uncertain points on a real line L and each uncertain point is specified by a probability density
function that is a piecewise-uniform function (i.e., a histogram). The goal is to find a point c (the center) on
L such that the maximum expected distance from c to all uncertain points of P is minimized. We present
a linear-time algorithm for this problem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the real world, data is often associated with uncertainty
due to their essence, the measurement inaccuracy, sampling
discrepancy, resource limitation, etc. [6,9]. In this paper, we
consider the one-dimensional one-center problem on uncertain
data, defined as follows.

Let L be a real line. Without loss of generality, we assume L is
the x-axis. Let P be a set of n uncertain points {P1, P2, . . . , Pn} on
L, where each uncertain point Pi ∈ P is specified by its probability
density function (pdf) fi: R → R+

∪ {0}, which is a piecewise-
uniform function (i.e., a histogram), consisting of at most m + 1
pieces (e.g., see Fig. 1). More specifically, for each Pi, there are m
sorted x-coordinates xi1 < xi2 < · · · < xim andm − 1 nonnegative
values yi1, yi2, . . . , yi,m−1 such that fi(x) = yij for xij ≤ x < xi,j+1
with 1 ≤ j ≤ m − 1. For convenience of discussion, we assume
xi0 = −∞, xi,m+1 = +∞, yi0 = yim = 0, and fi(x) = 0 for
x ∈ (−∞, xi1) ∪ [xim, +∞).

As discussed in [1], such a histogram function fi can be used
to approximate any pdf with arbitrary precision. In particular,
for the discrete case where each uncertain point has a finite
number of discrete locations, each with a probability, it can also

∗ Corresponding author.
E-mail addresses: haitao.wang@usu.edu (H. Wang),

jingruzhang@aggiemail.usu.edu (J. Zhang).

be incorporated by our histogrammodel using infinitesimal pieces
at these locations. Thus, the discrete case is a special case of our
histogram model.

With a little abuse of notation, for any (deterministic) point q on
L, we also use q to denote the x-coordinate of q. For any uncertain
point Pi ∈ P , the expected distance from q to Pi is

Ed(q, Pi) =


+∞

−∞

fi(x)|x − q|dx.

The goal of our one-center problem on P is to find a
(deterministic) point c∗ on L such that the maximum expected
distance from c∗ to all uncertain points of P is minimized, and c∗

is called a center of P .
The algorithm proposed in our previous work [18] can solve

the problem in O(mn logmn + n log n logmn) time. In this paper,
we present an O(mn) time algorithm. Since the input size of the
problem is Θ(mn), our algorithm runs in linear time, which is
optimal.

We should point out that our algorithm is applicable to the
weighted case of this problem where each uncertain point Pi ∈

P has a nonnegative multiplicative weight wi and the weighted
expected distance is considered (i.e., Ed(q, Pi) = wi ·


+∞

−∞
fi(x)|x−

q|dx). To solve theweighted case,we can first reduce it to the above
unweighted case by changing each value yij to wi · yij for every
1 ≤ i ≤ n and 1 ≤ j ≤ m − 1, and then apply our algorithm
for the unweighted case. The running time is still linear. Hence, we
will focus our discussion on the unweighted case.
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Fig. 1. Illustrating the pdf fi of an uncertain point Pi withm = 8.

1.1. Related work

In our previous work [18], the problem of finding k centers for
a set P of uncertain points on L was studied, and an algorithm of
O(mn logmn + n log k log n logmn) time was proposed. Therefore,
when k = 1, the algorithm runs in O(mn logmn + n log n logmn)
time as mentioned above. In addition, the discrete case of the
above k-center problem (where each uncertain point Pi has m
discrete locations, each with a probability) was solved in a faster
way in O(mn logmn + n log k logmn) time [18], and the discrete
one-center problem was solved in O(mn) time [18]. Therefore, our
new result in this paper for the one-center problem under the
more general histogram model matches the previous result for
the discrete case. We also studied the discrete one-center problem
for uncertain points on tree networks and proposed a linear-time
algorithm in [17].

The deterministic k-center problems are classical facility
location problems that have been extensively studied. The problem
is NP-hard in the plane [13]. Efficient algorithms were known for
special cases, e.g., finding the smallest enclosing circle (i.e., the case
k = 1) [12], k-center on trees [4,11,14]. The deterministic k-center
problem in the one-dimensional space is solvable in O(n log n)
time [5,7,14]. As shown in [18], the deterministic one-center
problem in the one-dimensional space can be solved in linear time.

The k-center problems on uncertain data in high-dimensional
spaces have also been considered. For example, approximation
algorithms were given in [8] for different problemmodels, e.g., the
assignedmodel that is somewhat similar to our problemmodel and
the unassigned model which was relatively easy because it can be
reduced to the corresponding deterministic problem [8]. Foul [10]
studied the problem of finding the center in the plane to minimize
the maximum expected distance from the center to all uncertain
points, where each uncertain point has a uniform distribution in a
given rectangle. Other facility location problems on uncertain data
under various models, e.g., the minmax regret [2,3,16], have also
been studied (see [15] for a survey).

1.2. Our techniques

To solve our one-center problem, based on observations, we
reduce it to the following geometric problem. Let H be a set of n
unimodal functions in the plane (i.e., when x changes from −∞

to +∞, it first monotonically decreases and then increases) and
each function consists ofmpieceswith each piece being a parabolic
arc. We wish to find the lowest point v∗ in the upper envelope
of the functions of H . In the discrete version of the one-center
problem, as shown in [18], each parabolic arc of every function of
H is simply a line segment, and thus, v∗ can be found by applying
Megiddo’s linear-time linear programming algorithm [12]. In our
problem, however, since the parabolic arcs of the functions of H
may not be line segments, Megiddo’s algorithm in [12] does not
work any more. We present a new prune-and-search technique
that can compute v∗ in O(mn) time. This result immediately leads
to a linear time algorithm for our one-center problem on P .

Comparing with the linear programming problem, the above
geometric problem is more general (i.e., the linear programming
problem is a special case of our problem). Our linear time algorithm

Fig. 2. Illustrating the expected distance function Ed(x, Pi) for an uncertain point Pi
withm = 8; Ed(x, Pi) is monotonically decreasing for x ∈ (−∞, pi], and increasing
for x ∈ [pi, −∞).

for the problem may be interesting in its own right and may find
other applications as well. In fact, our result can be extended
to more general unimodal functions (see the discussions in
Section 4).

2. Preliminaries

A function g : R → R is a unimodal if there exists a value x′

such that for any x1 < x2, g(x1) ≥ g(x2) holds if x2 ≤ x′ and
g(x1) ≤ g(x2) holds if x′

≤ x1, i.e., g(x) ismonotonically decreasing
on x ∈ (−∞, x′

] and increasing on x ∈ [x′, +∞).
Recall that L is the x-axis, and for any point q on L, we also

use q to denote the x-coordinate of q. Therefore, the values of R
correspond to the points of L. In the following, we will use ‘‘the
values of R’’ and ‘‘the points of L’’ interchangeably.

Consider any uncertain point Pi of P . If we consider the
expected distance Ed(x, Pi) as a function of the points x on L (or
x ∈ R), the following observation has been proved in [18]. Note
that them coordinates xi1, . . . , xim of Pi are already given sorted.

Lemma 1 ([18]). The function Ed(x, Pi) for x ∈ R is unimodal.
More specifically, there exists a point pi ∈ L such that Ed(x, Pi) is
monotonically decreasing on x ∈ (−∞, pi] and increasing on x ∈

[pi, +∞) (e.g., see Fig. 2). In addition, Ed(x, Pi) is a parabolic arc (of
constant complexity) on the interval [xik, xi,k+1) for each 0 ≤ k ≤ m,
and can be explicitly computed in O(m) time.

The point pi in Lemma 1 is referred to as a centroid of Pi and
can be easily computed in O(m) time after Ed(x, Pi) is explicitly
computed in O(m) time [18]. In fact, a point q ∈ L is a centroid of
Pi if and only if

 q
−∞

fi(x) = 0.5 and


+∞

q fi(x) = 0.5. Note that the
centroid of Pi may not be unique. This case happens when there
exists an interval on the x-axis such that for any point q in this
interval both

 q
−∞

fi(x) = 0.5 and


+∞

q fi(x) = 0.5 hold, and thus
Ed(x, Pi) is a constant when x is in this interval and any point q in
this interval is a centroid. If the centroid of Pi is not unique, thenwe
use pi to refer to an arbitrary such centroid. For a similar reason, the
center of P may also not be unique, in which case our algorithm
will find one such center.

The following corollary can be easily obtained based on
Lemma 1 and binary search on the sorted list of xi1, xi2, . . . , xim.

Corollary 1 ([18]). For each uncertain point Pi, with O(m) time
preprocessing, the value Ed(x′, Pi) for any query value x′ can be
computed in O(logm) time.

LetH denote the set of all functionsEd(x, Pi) for i = 1, 2, . . . , n.
Since the center c∗ of P is a point on L that minimizes the value
maxni=1 Ed(x, Pi), i.e., c

∗
= argminx∈L maxni=1 Ed(x, Pi), c

∗ is equal
to the x-coordinate of the lowest point v∗ in the upper envelope of
H . Therefore, to compute c∗, it is sufficient to find v∗.

As shown in [18] and mentioned in Section 1.2, in the discrete
case where each uncertain point Pi has m discrete locations (each
with a probability), each function Ed(x, Pi) consists ofm+1 pieces
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