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a b s t r a c t

The vertex cover polytopes of graphs do not admit polynomial-size extended formulations. Thismotivates
the search for polyhedral analogues to approximation algorithms and fixed-parameter tractable (FPT)
algorithms. In this paper, we take the FPT approach and study the k-vertex cover polytope (the convex
hull of vertex covers of size k). Ourmain result is that there are extended formulations of sizeO(1.47k

+kn).
We also provide FPT extended formulations for solutions of size k to instances of d-hitting set.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Two of the most well-studied problems in combinatorial opti-
mization are the minimum vertex cover problem and the maxi-
mum independent set problem. Their polyhedral representations,
the vertex cover polytope VC(G) and the independent (or stable)
set polytope STAB(G), have been the subject of numerous stud-
ies [27,25,26,31], and can be defined as follows. For a graph G =

(V , E),

VC(G) := conv.hull

xS | S ⊆ V is a vertex cover for G


STAB(G) := conv.hull


xS | S ⊆ V is an independent set in G


where xS denotes the characteristic vector of S. These two
polytopes are closely related to each other. Indeed, letting 1 be a
vector of ones, it is easy to see that

VC(G) = {x | (1 − x) ∈ STAB(G)}.

One reason for studying these polytopes is that exact, partial,
or even approximate descriptions of them by linear inequalities
can be used to help solve integer programs with set packing con-
straints [27].

Due to the difficulty of the minimum vertex cover problem and
the maximum independent set problem, VC(G) and STAB(G) are
likely to be complicated. Indeed, they can have exponentiallymany
facets even when G is series-parallel, but, in this case, VC(G) and
STAB(G) admit linear-size extended formulations [3]. (The size of
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an extended formulation is the number of linear inequalities in its
description.)

However, small extended formulations for VC(G) and STAB(G)
are the exception rather than the rule. For some classes of graphs,
2Ω(

√
n) linear inequalities are needed [16], and a lower bound

of 2Ω(n) has been conjectured [7]. This motivates the search
for approximate or fixed-parameter tractable (FPT) extended
formulations. The polyhedral approximability of VC(G) and
STAB(G) was recently studied by Bazzi et al. [4]. In this paper, we
take the FPT approach. An extended formulation is said to be FPT if
its size is bounded above by f (k)nO(1), where k is the parameter of
choice, f is a function that depends only on k, and n is the input size.

To formalize our approach, consider the k-vertex cover polytope
VCk(G) of a graph G, which is the convex hull of vertex covers of G
that have size k.

VCk(G) := conv.hull

xS | S ⊆ V is a vertex cover

for G and |S| = k} .

The problem of determining whether a graph has a vertex
cover of size k, i.e., the k-vertex cover problem, is the prototypical
problem in the FPT literature, so there are numerous structural
results that can be used when developing extended formulations.
For example, we use Damaschke’s [15] refinement of Sam Buss’s
kernel for k-vertex cover [11] and decomposition ideas from Chen
et al. [12].

1.1. Our contributions

Our main result is that k-vertex cover polytopes of n-vertex
graphs admit extended formulations of sizeO(1.47k

+kn). En route
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to proving this, we exhibit size O(n) formulations for the case of
graphs ofmaximumdegree atmost two. In its proof, we use known
results regarding the cardinality-constrained matching polytope
and t-perfect graphs.

Before showing this, we provide simple extended formulations
for the hypergraph case. They are of size O(dkn) for d-uniform
hypergraphs. (In a d-uniform hypergraph, each hyperedge has d
vertices.) This is equivalent to solutions of size k to instances of
d-Hitting Set. Our results hold when each hyperedge has at most
d vertices, but we state everything for d-uniform hypergraphs for
sake of exposition. This implies size O(2kn) extended formulations
for the standard vertex cover problem. This bound is worse than
what we eventually will show, but it is easier to obtain.

1.2. Preliminaries and related work

Definition 1. Let P = {x | Ax ≤ b} ⊆ Rn be a polyhedron. A
polyhedron Q ⊆ Rd is said to be an extension for P if projx(Q ) = P ,
where projx(Q ) := {x | ∃y : (x, y) ∈ Q (G)}. The size of an
extension is the number of its facets.

A particular representation of an extension by linear inequal-
ities is called an extended formulation. Consult the surveys of
Conforti et al. [14] and Kaibel [19] for some notable extended for-
mulations.

Definition 2. The extension complexity of a polyhedron P is

xc(P) := min{size(Q ) | Q is an extension for P}.

We will use Balas’ extended formulation for the union of
polyhedra.

Theorem 1 (Balas [1,2]). Consider q polytopes P i
⊆ Rn, i =

1, . . . , q and write P := conv.hull
q

i=1 P
i

. Then, xc(P) ≤ q +q

i=1 xc(P
i).

Since the work of Yannakakis [34], there have been numer-
ous advances showing that certain polytopes have high extension
complexity. For example, polytopes associatedwith NP-hard prob-
lems such as the traveling salesman problem and the 0-1 knapsack
problem admit no polynomial-size extended formulation [16,28]—
irrespective of whether P = NP. There are even polynomial-time
solvable problems such asmatching that admit no polynomial-size
extended formulations [29].While thematching polytope does not
admit a polyhedral equivalent to an FPTAS [8], it does admit FPT ex-
tended formulations parameterized by the number of edges in the
matching [20].

In a draft of this paper, we asked whether there exist FPT
extended formulations for independent set (parameterized by
solution size). Gajarskỳ et al. [17] answer this in the negative for
arbitrary graphs, but provide FPT extended formulations for graphs
of bounded expansion.

The independent set and vertex cover problems have both been
studied from the perspective of approximate extended formu-
lations. Independent set admits no polynomial-size uniform ex-
tended formulation that achieves an O(n1−ϵ) approximation for
any constant ϵ > 0 [9], which matches the inapproximability
of the maximum independent set problem [18,35]. If we allow
for non-uniform extended formulations, that is, the inequalities
defining the feasible regionneednot be the same for everyn-vertex
graph, then O(1)-approximate formulations still require super-
polynomial size [4]. Somewhat surprisingly, O(n1/2)-approximate
extended formulations of size O(n) exist, but they are NP-hard
to construct [4]. For the vertex cover problem, there are no
polynomial-size extended formulations achieving a (2 − ϵ)-
approximation [4] for any constant ϵ > 0, and the standard linear
programming relaxation provides a matching upper bound of 2.

Sometimes it will be convenient to work with the k-
independent set polytope STABk(G). We note that the independent
set polytope STAB(G) and vertex cover polytope VC(G) have the
same extension complexity. This can be seen by complementing
the variables, i.e., replacing each instance of a variable xi in a for-
mulation by 1 − xi. The same idea shows that their cardinality-
constrained counterparts VCk(G) and STABn−k(G) have the same
extension complexity.

Other parameters besides solution size can be used when
developing extended formulations for vertex cover. A notable
example is the graph invariant treewidth tw, which is a measure
of how ‘‘tree-like’’ a graph is. There exist extended formulations for
VC(G) of sizeO(2twn) [23] (cf. an alternative proof by Buchanan and
Butenko [10] based on the framework of Martin et al. [24]). Similar
results hold for more general problems [5,21,22].

2. Formulations for vertex cover in hypergraphs

The main result of this section is that there are simple size
O(dkn) extended formulations for k-vertex covers of d-uniform
hypergraphs. This bound is O(n) when d + k is a constant.
The extended formulations are based primarily on the following
folklore lemma, which we prove for completeness.

Lemma 1 (Folklore). In a d-uniform hypergraph H = (V , E), the
number of minimal vertex covers of H that have size≤ k is at most dk.

Proof. Denote by Sk(H) the set of minimal vertex covers that have
size at most k. We are to show that |Sk(H)| ≤ dk. The proof is by
induction on k. In the base case, k = 0. If E = ∅, then S0(H) = {∅}

so |S0(H)| = 1 ≤ d0. If not, then E ≠ ∅ so S0(H) = ∅ and
|S0(H)| = 0 ≤ d0. Now suppose the claim holds for k = p. If
E = ∅, then |Sp+1(H)| = 1. If not, let e ∈ E and then it can be seen
that |Sp+1(H)| ≤


j∈e |Sp(H − j)| ≤ d · dp. �

The bound in Lemma 1 is sharp. It is achieved on the d-uniform
hypergraph consisting of k disjoint hyperedges.

Proposition 1. If H is a d-uniform n-vertex hypergraph, then the k-
vertex cover polytope VCk(H) of H admits an extended formulation of
size O(dkn).

Proof. Define Sk(H) as in the proof of Lemma 1. For each S ∈

Sk(H), define P(S) :=

x ∈ [0, 1]n |


i∈V xi = k; x ≥ xS


, where

xS denotes the characteristic vector of S. We claim VCk(H) =

conv.hull

∪S∈Sk(H) P(S)


=: P , in which case the proposition

would follow by Theorem 1.
(⊆) Consider an extreme point of VCk(H), which will be xC for

some k-vertex cover C ⊆ V . Then, C is a superset of some minimal
vertex cover C ′, and C ′

∈ Sk(H). Thus, xC ∈ P(C ′) ⊆ P .
(⊇) Let x′ be an extreme point of P , which will be an extreme

point of some P(S). It is straightforward to show that P(S) is an
integer polytope, so x′

= xD for some D ⊆ V . Thus D ⊇ S and
|D| = k, meaning that D is a k-vertex cover so x′

= xD belongs to
VCk(H). �

We remark that a better size bound O(f (d, k) + kn) can be
achieved, where f is a function that depends only on d and k. To
achieve this, one can exploit the ‘‘full kernel’’ given in Theorem 7
of Damaschke’s paper [15]. We employ the full kernel in the next
section, and thus do not spend time detailing the approach for
hypergraphs.

3. Improved FPT formulations for vertex cover

The results of the previous section immediately imply size
O(2kn) extended formulations for the k-vertex cover polytopes
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