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a b s t r a c t

The Douglas–Rachford algorithm is a simple yet effective method for solving convex feasibility problems.
However, if the underlying constraints are inconsistent, then the convergence theory is incomplete. We
provide convergence results when one constraint is an affine subspace. As a consequence, we extend a
result by Spingarn from halfspaces to general closed convex sets admitting least-squares solutions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We shall assume throughout this paper that X is a real Hilbert
space with inner product ⟨·, ·⟩ and induced norm ∥ · ∥, and that

A and B are nonempty closed convex
(not necessarily intersecting) subsets of X . (1)

Consider the problem of finding a best approximation pair relative
to A and B (see [3,12]), that is to

find (a, b) ∈ A × B such that ∥a − b∥ = inf ∥A − B∥. (2)

Recall that the Douglas–Rachford splitting operator (see, e.g., [11]
or [3, Proposition 3.3(i)]) for the ordered pair of sets (A, B) is
defined by

T = T(A,B) :=
1
2 (Id + RBRA) = Id − PA + PBRA, (3)

where PA is the projector onto A and RA := 2PA − Id is the
reflector onto A. Let x ∈ X . Consider momentarily the consistent
case, i.e., when A ∩ B ≠ ∅. In this case the ‘‘governing sequence’’
(T nx)n∈N generated by iterating the Douglas–Rachford operator
converges weakly to a point in the set of fixed points Fix T :=
x ∈ X

x = Tx

(see [11]), and the ‘‘shadow sequence’’ (PAT nx)n∈N
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convergesweakly to a point in A∩B (see [17] or [2, Theorem 25.6]).
For further information on the Douglas–Rachford algorithm (DRA),
see also [11,9]. In fact, DRA is a splitting method to find a point in
the set of minimizers of ιA + ιB, i.e., in A ∩ B. Other methods that
can be used for the same set are e.g., the forward–backwardmethod
(see, e.g., [2, Section 25.3]) or FISTA (see, e.g., [6,7]) which view A∩B
as the set of minimizers of ιA +

1
2d

2
B, and the subgradient projection

method (see, e.g., [14,8]) applied to the function 1
2d

2
A +

1
2d

2
B. (Here

and elsewhere, given a nonempty closed convex subset C of X , we
use ιC to denote the indicator function associated with C , defined
by ιC (x) = 0 for all x ∈ C and ιC (x) = +∞ otherwise, and
dC to denote the distance function from the set C defined by dC :

X → [0, +∞[ : x → minc∈C ∥x − c∥ = ∥x − PCx∥.) In [3],
the authors showed that in the inconsistent case, when A ∩ B =

∅, (PAT nx)n∈N remains bounded with the weak cluster points of
(PAT nx, PBPAT nx)n∈N being best approximation pairs relative to A
and B whenever g := PB−A0 ∈ B − A. The goal of this paper is to
study the case when A ∩ B is possibly empty in the setting that one of
the sets A and B is a closed affine subspace of X.Our results show that
the shadowsequencewill always converge to a best approximation
solution in A∩ (B− g). As a consequence we obtain a far-reaching
refinement of Spingarn’s splitting method introduced in [16].

2. Main results

We start with the following key lemma, which is well known
when A = X (see, e.g., [2, Theorem 5.5]).
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Lemma 2.1. Let A be a closed linear subspace of X, let C be a
nonempty closed convex subset of A, and let (xn)n∈N be a sequence
in X. Suppose that (xn)n∈N is Fejér monotone with respect to C, i.e.,
(∀n ∈ N) (∀c ∈ C) ∥xn+1 − c∥ ≤ ∥xn − c∥, and that all weak cluster
points of (PAxn)n∈N lie in C. Then (PAxn)n∈N converges weakly to some
point in C.

Proof. The proof follows largely along the lines of [2, Lemma 2.39
and Theorem 5.5]; however, we point out below where the lin-
earity of PA is used. Since (xn)n∈N is bounded (by e.g., [2, Proposi-
tion 5.4(i)]) and PA is (firmly) nonexpansivewe learn that (PAxn)n∈N
is bounded and by assumption, its weak cluster points lie in C ⊆ A.
Now let c1 and c2 be in C . On the one hand the Fejérmonotonicity of
(xn)n∈N implies the convergence of the sequences (∥xn − c1∥2)n∈N
and (∥xn − c2∥2)n∈N by e.g., [2, Proposition 5.4(ii)]. On the other
hand, expanding and simplifying yield ∥xn − c1∥2

− ∥xn − c2∥2
=

∥xn∥2
+ ∥c1∥2

− 2⟨xn, c1⟩ − ∥xn∥2
− ∥c2∥2

+ 2⟨xn, c2⟩ = ∥c1∥2
−

2⟨xn, c1 − c2⟩−∥c2∥2,which in turn implies that (⟨xn, c1 − c2⟩)n∈N
converges. Since c1 ∈ A and c2 ∈ A, using the linearity of PA, we
have

⟨xn, c1 − c2⟩ = ⟨xn, PAc1 − PAc2⟩ = ⟨xn, PA(c1 − c2)⟩
= ⟨PAxn, c1 − c2⟩. (4)

Now assume that (PAxkn)n∈N and (PAxln)n∈N are subsequences of
(PAxn)n∈N such that PAxkn ⇀ c1 and PAxln ⇀ c2. By the uniqueness
of the limit in (4) we conclude that ⟨c1, c1 − c2⟩ = ⟨c2, c1 − c2⟩ or
equivalently ∥c1 − c2∥2

= 0, hence (PAxn)n∈N has a unique weak
cluster point which completes the proof. �

From now on we work under the assumption that

g = g(A,B) := PB−A0 ∈ B − A. (5)

In view of (5) we have

E = E(A,B) := A ∩ (B − g) ≠ ∅ and
F = F(A,B) := (A + g) ∩ B ≠ ∅.

(6)

For sufficient conditions on when g ∈ B − A (or equivalently the
sets E and F are nonempty) we refer the reader to [1, Facts 5.1].

Lemma 2.2. Let x ∈ X. Then the following hold:

(i) If C ∈ {A, B} is a closed affine subspace of X, then g ∈ (C −C)⊥.
(ii) The sequence (T nx− ng)n∈N is Fejér monotone with respect to E.
(iii) The sequence (PAT nx)n∈N is bounded and all weak cluster points

lie in E.
(iv) If B is a closed affine subspace, then PBT nx − PAT nx → g, the

sequence (PBT nx)n∈N is bounded and all weak cluster points lie
in F .

(v) If E = {x̄} and hence F = {x̄ + g}, then PAT nx ⇀ x̄ and
PBT nx ⇀ x̄ + g.

Proof. (i) See [3, Corollary 2.7 and Remark 2.8(ii)]. (ii) It follows
from [3, Theorem 3.5] that E + NA−B(−g) ⊆ Fix(−g +

T ) :=

x ∈ X

x = −g + Tx

, where NC denotes the normal cone

operator associated with a nonempty closed convex subset C of
X . Consequently, E ⊆ Fix(−g + T ). Moreover, [3, Remark 3.15]
implies that the sequence (T nx − ng)n∈N is Fejér monotone with
respect to Fix(−g+T ). (iii) See [3, Theorem3.13(iii)(b)]. (iv) See [3,
Theorem 3.17]. (v) This follows from (iii) and (iv). �

We are now ready for our main results.

Theorem 2.3 (Convergence of DRA When A is a Closed Affine
Subspace). Suppose that A is a closed affine subspace of X, and let
x ∈ X. Then the following hold:

(i) The shadow sequence (PAT nx)n∈N converges weakly to some
point in E = A ∩ (B − g).

Fig. 1. A GeoGebra [10] snapshot that illustrates Example 2.4 with the starting
point x = (0.5, 0).

(ii) No general conclusion can be drawn about the boundedness of the
sequence (PBT nx)n∈N.

Proof. (i) After translating the sets A and B by a vector, if necessary,
we can and do assume that A is a closed linear subspace of X . Using
Lemma 2.2(i) we learn that (∀n ∈ N) PAT nx = PA(T nx − ng). Note
that E = A ∩ (B − g) ⊆ A. Now combine Lemma 2.2(ii)–(iii) and
Lemma 2.1 with C = E, and (xn)n∈N replaced by (T nx− ng)n∈N. (ii)
In fact, (PBT nx)n∈N can be unbounded (see Example 2.4) or bounded
(e.g., when A = B = X). �

Example 2.4. Suppose that X = R2, that A = R × {0} and that
B = epi (| · | + 1). Then A ∩ B = ∅ and for the starting point
x ∈ [−1, 1] × {0} we have (∀n ∈ {1, 2, . . .}) T nx = (0, n) ∈ B
and therefore ∥PBT nx∥ = ∥T nx∥ = n → ∞. Fig. 1 provides an
illustration of the first few iterates of (T nx)n∈N.

Proof. Let x = (α, 0) with α ∈ [−1, 1]. We proceed by induction.
When n = 1 we have T (α, 0) = PA⊥(α, 0) + PBRA(α, 0) =

PB(α, 0) = (0, 1). Now suppose that for some (n ∈ {1, 2, . . .})
T nx = (0, n). Then T n+1x = T (0, n) = PA⊥(0, n) + PBRA(0, n) =

(0, n) + PB(0, −n) = (0, n + 1) ∈ B. �

When B is an affine subspace, the convergence theory is even
more satisfying:

Theorem 2.5 (Convergence of DRA When B is a Closed Affine
Subspace). Suppose that B is a closed affine subspace of X, and let
x ∈ X. Then the following hold:

(i) The shadow sequence (PAT nx)n∈N converges weakly to some
point in E = A ∩ (B − g).

(ii) The sequence (PBT nx)n∈N converges weakly to some point in F =

(A + g) ∩ B.

Proof. (ii) Combine Theorem 2.3(i) and [5, Corollary 2.8(i)]. (i)
Combine (ii) and Lemma 2.2(iv). �

It is tempting to conjecture that Theorem 2.3(i) remains true
when A is just convex and not necessarily a subspace. While this
statement may be true (in [3, Remark 3.14(ii)], the authors claim
otherwise but forgot to list the assumption that A ∩ B ≠ ∅), the
proof of Theorem 2.3(i) does not admit such an extension:

Example 2.6. Suppose that X = R, that A = [1, 2] and that
B = {0}. Then g = −1 and E = {1}. Let x = 4. We have
(T nx)n∈N = (4, 2, 0, −1, −2, −3, . . .), PAT nx → 1 ∈ E and
(∀n ∈ {2, 3, 4, . . .}) T nx − ng = −(n − 2) − n(−1) = 2 ∈ A
and PA(T nx − ng) = 2 ∈ A r E. In the proof of Theorem 2.3(i), we
had (PAT nx)n∈N = (PA(T nx− ng))n∈N which is strikingly false here.
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