The Douglas-Rachford algorithm in the affine-convex case

Heinz H. Bauschke ${ }^{\mathrm{a}, *}$, Minh N. Dao ${ }^{\mathrm{a}, \mathrm{b}}$, Walaa M. Moursi ${ }^{\mathrm{a}, \mathrm{c}}$
${ }^{\text {a }}$ Mathematics, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada
${ }^{\mathrm{b}}$ Department of Mathematics and Informatics, Hanoi National University of Education, 136 Xuan Thuy, Hanoi, Viet Nam
${ }^{\text {c }}$ Mansoura University, Faculty of Science, Mathematics Department, Mansoura 35516, Egypt

ARTICLE INFO

Article history:

Received 24 May 2015
Received in revised form
16 March 2016
Accepted 16 March 2016
Available online 25 March 2016

Keywords:

Convex feasibility problem
Douglas-Rachford splitting operator
Least-squares solution
Spingarn's method

Abstract

The Douglas-Rachford algorithm is a simple yet effective method for solving convex feasibility problems. However, if the underlying constraints are inconsistent, then the convergence theory is incomplete. We provide convergence results when one constraint is an affine subspace. As a consequence, we extend a result by Spingarn from halfspaces to general closed convex sets admitting least-squares solutions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We shall assume throughout this paper that X is a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$, and that
A and B are nonempty closed convex
(not necessarily intersecting) subsets of X.
Consider the problem of finding a best approximation pair relative to A and B (see $[3,12]$), that is to
find $(a, b) \in A \times B \quad$ such that $\|a-b\|=\inf \|A-B\|$.
Recall that the Douglas-Rachford splitting operator (see, e.g., [11] or [3, Proposition 3.3(i)]) for the ordered pair of sets (A, B) is defined by
$T=T_{(A, B)}:=\frac{1}{2}\left(\mathrm{Id}+R_{B} R_{A}\right)=\mathrm{Id}-P_{A}+P_{B} R_{A}$,
where P_{A} is the projector onto A and $R_{A}:=2 P_{A}$ - Id is the reflector onto A. Let $x \in X$. Consider momentarily the consistent case, i.e., when $A \cap B \neq \varnothing$. In this case the "governing sequence" $\left(T^{n} x\right)_{n \in \mathbb{N}}$ generated by iterating the Douglas-Rachford operator converges weakly to a point in the set of fixed points Fix $T:=$ $\{x \in X \mid x=T x\}$ (see [11]), and the "shadow sequence" $\left(P_{A} T^{n} x\right)_{n \in \mathbb{N}}$

[^0]converges weakly to a point in $A \cap B$ (see [17] or [2, Theorem 25.6]). For further information on the Douglas-Rachford algorithm (DRA), see also [11,9]. In fact, DRA is a splitting method to find a point in the set of minimizers of $\iota_{A}+\iota_{B}$, i.e., in $A \cap B$. Other methods that can be used for the same set are e.g., the forward-backward method (see, e.g., [2, Section 25.3]) or FISTA (see, e.g., [6,7]) which view $A \cap B$ as the set of minimizers of $\iota_{A}+\frac{1}{2} d_{B}^{2}$, and the subgradient projection method (see, e.g., $[14,8]$) applied to the function $\frac{1}{2} d_{A}^{2}+\frac{1}{2} d_{B}^{2}$. (Here and elsewhere, given a nonempty closed convex subset C of X, we use l_{C} to denote the indicator function associated with C, defined by $\iota_{C}(x)=0$ for all $x \in C$ and $\iota_{C}(x)=+\infty$ otherwise, and d_{C} to denote the distance function from the set C defined by d_{C} : $X \rightarrow\left[0,+\infty\left[: x \mapsto \min _{c \in c}\|x-c\|=\left\|x-P_{C} x\right\|\right.\right.$.) In [3], the authors showed that in the inconsistent case, when $A \cap B=$ $\varnothing,\left(P_{A} T^{n} x\right)_{n \in \mathbb{N}}$ remains bounded with the weak cluster points of $\left(P_{A} T^{n} x, P_{B} P_{A} T^{n} x\right)_{n \in \mathbb{N}}$ being best approximation pairs relative to A and B whenever $g:=P_{\overline{B-A}} 0 \in B-A$. The goal of this paper is to study the case when $A \cap B$ is possibly empty in the setting that one of the sets A and B is a closed affine subspace of X. Our results show that the shadow sequence will always converge to a best approximation solution in $A \cap(B-g)$. As a consequence we obtain a far-reaching refinement of Spingarn's splitting method introduced in [16].

2. Main results

We start with the following key lemma, which is well known when $A=X$ (see, e.g., [2, Theorem 5.5]).

Lemma 2.1. Let A be a closed linear subspace of X, let C be a nonempty closed convex subset of A, and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X. Suppose that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to C, i.e., $(\forall n \in \mathbb{N})(\forall c \in C)\left\|x_{n+1}-c\right\| \leq\left\|x_{n}-c\right\|$, and that all weak cluster points of $\left(P_{A} x_{n}\right)_{n \in \mathbb{N}}$ lie in C. Then $\left(P_{A} x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to some point in C.

Proof. The proof follows largely along the lines of [2, Lemma 2.39 and Theorem 5.5]; however, we point out below where the linearity of P_{A} is used. Since $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded (by e.g., [2, Proposition 5.4(i)]) and P_{A} is (firmly) nonexpansive we learn that $\left(P_{A} x_{n}\right)_{n \in \mathbb{N}}$ is bounded and by assumption, its weak cluster points lie in $C \subseteq A$. Now let c_{1} and c_{2} be in C. On the one hand the Fejér monotonicity of $\left(x_{n}\right)_{n \in \mathbb{N}}$ implies the convergence of the sequences $\left(\left\|x_{n}-c_{1}\right\|^{2}\right)_{n \in \mathbb{N}}$ and $\left(\left\|x_{n}-c_{2}\right\|^{2}\right)_{n \in \mathbb{N}}$ by e.g., [2, Proposition 5.4(ii)]. On the other hand, expanding and simplifying yield $\left\|x_{n}-c_{1}\right\|^{2}-\left\|x_{n}-c_{2}\right\|^{2}=$ $\left\|x_{n}\right\|^{2}+\left\|c_{1}\right\|^{2}-2\left\langle x_{n}, c_{1}\right\rangle-\left\|x_{n}\right\|^{2}-\left\|c_{2}\right\|^{2}+2\left\langle x_{n}, c_{2}\right\rangle=\left\|c_{1}\right\|^{2}-$ $2\left\langle x_{n}, c_{1}-c_{2}\right\rangle-\left\|c_{2}\right\|^{2}$, which in turn implies that $\left(\left\langle x_{n}, c_{1}-c_{2}\right\rangle\right)_{n \in \mathbb{N}}$ converges. Since $c_{1} \in A$ and $c_{2} \in A$, using the linearity of P_{A}, we have

$$
\begin{align*}
\left\langle x_{n}, c_{1}-c_{2}\right\rangle & =\left\langle x_{n}, P_{A} c_{1}-P_{A} c_{2}\right\rangle=\left\langle x_{n}, P_{A}\left(c_{1}-c_{2}\right)\right\rangle \\
& =\left\langle P_{A} x_{n}, c_{1}-c_{2}\right\rangle . \tag{4}
\end{align*}
$$

Now assume that $\left(P_{A} x_{k_{n}}\right)_{n \in \mathbb{N}}$ and $\left(P_{A} x_{l_{n}}\right)_{n \in \mathbb{N}}$ are subsequences of $\left(P_{A} x_{n}\right)_{n \in \mathbb{N}}$ such that $P_{A} x_{k_{n}} \rightharpoonup c_{1}$ and $P_{A} x_{l_{n}} \rightharpoonup c_{2}$. By the uniqueness of the limit in (4) we conclude that $\left\langle c_{1}, c_{1}-c_{2}\right\rangle=\left\langle c_{2}, c_{1}-c_{2}\right\rangle$ or equivalently $\left\|c_{1}-c_{2}\right\|^{2}=0$, hence $\left(P_{A} x_{n}\right)_{n \in \mathbb{N}}$ has a unique weak cluster point which completes the proof.

From now on we work under the assumption that
$g=g_{(A, B)}:=P_{\overline{B-A}} 0 \in B-A$.
In view of (5) we have
$E=E_{(A, B)}:=A \cap(B-g) \neq \varnothing$ and
$F=F_{(A, B)}:=(A+g) \cap B \neq \varnothing$.
For sufficient conditions on when $g \in B-A$ (or equivalently the sets E and F are nonempty) we refer the reader to [1, Facts 5.1].

Lemma 2.2. Let $x \in X$. Then the following hold:
(i) If $C \in\{A, B\}$ is a closed affine subspace of X, then $g \in(C-C)^{\perp}$.
(ii) The sequence $\left(T^{n} x-n g\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to E.
(iii) The sequence $\left(P_{A} T^{n} x\right)_{n \in \mathbb{N}}$ is bounded and all weak cluster points lie in E.
(iv) If B is a closed affine subspace, then $P_{B} T^{n} x-P_{A} T^{n} x \rightarrow g$, the sequence $\left(P_{B} T^{n} x\right)_{n \in \mathbb{N}}$ is bounded and all weak cluster points lie in F.
(v) If $E=\{\bar{x}\}$ and hence $F=\{\bar{x}+g\}$, then $P_{A} T^{n} x \rightharpoonup \bar{x}$ and $P_{B} T^{n} x \rightharpoonup \bar{x}+g$.
Proof. (i) See [3, Corollary 2.7 and Remark 2.8(ii)]. (ii) It follows from [3, Theorem 3.5] that $E+N_{\overline{A-B}}(-g) \subseteq \operatorname{Fix}(-g+$ $T):=\{x \in X \mid x=-g+T x\}$, where N_{C} denotes the normal cone operator associated with a nonempty closed convex subset C of X. Consequently, $E \subseteq \operatorname{Fix}(-g+T)$. Moreover, [3, Remark 3.15] implies that the sequence $\left(T^{n} x-n g\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to Fix $(-g+T)$. (iii) See [3, Theorem 3.13(iii)(b)]. (iv) See [3, Theorem 3.17]. (v) This follows from (iii) and (iv).

We are now ready for our main results.
Theorem 2.3 (Convergence of DRA When A is a Closed Affine Subspace). Suppose that A is a closed affine subspace of X, and let $x \in X$. Then the following hold:
(i) The shadow sequence $\left(P_{A} T^{n} x\right)_{n \in \mathbb{N}}$ converges weakly to some point in $E=A \cap(B-g)$.

Fig. 1. A GeoGebra [10] snapshot that illustrates Example 2.4 with the starting point $x=(0.5,0)$.
(ii) No general conclusion can be drawn about the boundedness of the sequence $\left(P_{B} T^{n} x\right)_{n \in \mathbb{N}}$.
Proof. (i) After translating the sets A and B by a vector, if necessary, we can and do assume that A is a closed linear subspace of X. Using Lemma 2.2(i) we learn that $(\forall n \in \mathbb{N}) P_{A} T^{n} x=P_{A}\left(T^{n} x-n g\right)$. Note that $E=A \cap(B-g) \subseteq A$. Now combine Lemma 2.2(ii)-(iii) and Lemma 2.1 with $C=E$, and $\left(x_{n}\right)_{n \in \mathbb{N}}$ replaced by $\left(T^{n} x-n g\right)_{n \in \mathbb{N}}$. (ii) In fact, $\left(P_{B} T^{n} x\right)_{n \in \mathbb{N}}$ can be unbounded (see Example 2.4) or bounded (e.g., when $A=B=X$).

Example 2.4. Suppose that $X=\mathbb{R}^{2}$, that $A=\mathbb{R} \times\{0\}$ and that $B=$ epi $(|\cdot|+1)$. Then $A \cap B=\varnothing$ and for the starting point $x \in[-1,1] \times\{0\}$ we have $(\forall n \in\{1,2, \ldots\}) T^{n} x=(0, n) \in B$ and therefore $\left\|P_{B} T^{n} x\right\|=\left\|T^{n} x\right\|=n \rightarrow \infty$. Fig. 1 provides an illustration of the first few iterates of $\left(T^{n} x\right)_{n \in \mathbb{N}}$.
Proof. Let $x=(\alpha, 0)$ with $\alpha \in[-1,1]$. We proceed by induction. When $n=1$ we have $T(\alpha, 0)=P_{A^{\perp}}(\alpha, 0)+P_{B} R_{A}(\alpha, 0)=$ $P_{B}(\alpha, 0)=(0,1)$. Now suppose that for some ($n \in\{1,2, \ldots\}$) $T^{n} x=(0, n)$. Then $T^{n+1} x=T(0, n)=P_{A \perp}(0, n)+P_{B} R_{A}(0, n)=$ $(0, n)+P_{B}(0,-n)=(0, n+1) \in B$.

When B is an affine subspace, the convergence theory is even more satisfying:

Theorem 2.5 (Convergence of DRA When B is a Closed Affine Subspace). Suppose that B is a closed affine subspace of X, and let $x \in X$. Then the following hold:
(i) The shadow sequence $\left(P_{A} T^{n} x\right)_{n \in \mathbb{N}}$ converges weakly to some point in $E=A \cap(B-g)$.
(ii) The sequence $\left(P_{B} T^{n} x\right)_{n \in \mathbb{N}}$ converges weakly to some point in $F=$ $(A+g) \cap B$.

Proof. (ii) Combine Theorem 2.3(i) and [5, Corollary 2.8(i)]. (i) Combine (ii) and Lemma 2.2(iv).

It is tempting to conjecture that Theorem 2.3(i) remains true when A is just convex and not necessarily a subspace. While this statement may be true (in [3, Remark 3.14(ii)], the authors claim otherwise but forgot to list the assumption that $A \cap B \neq \varnothing$), the proof of Theorem 2.3(i) does not admit such an extension:

Example 2.6. Suppose that $X=\mathbb{R}$, that $A=[1,2]$ and that $B=\{0\}$. Then $g=-1$ and $E=\{1\}$. Let $x=4$. We have $\left(T^{n} x\right)_{n \in \mathbb{N}}=(4,2,0,-1,-2,-3, \ldots), P_{A} T^{n} x \rightarrow 1 \in E$ and $(\forall n \in\{2,3,4, \ldots\}) T^{n} x-n g=-(n-2)-n(-1)=2 \in A$ and $P_{A}\left(T^{n} x-n g\right)=2 \in A \backslash E$. In the proof of Theorem 2.3(i), we had $\left(P_{A} T^{n} x\right)_{n \in \mathbb{N}}=\left(P_{A}\left(T^{n} x-n g\right)\right)_{n \in \mathbb{N}}$ which is strikingly false here.

https://daneshyari.com/en/article/1142145

Download Persian Version:
https://daneshyari.com/article/1142145

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: heinz.bauschke@ubc.ca (H.H. Bauschke), minhdn@hnue.edu.vn (M.N. Dao), walaa.moursi@ubc.ca (W.M. Moursi).

