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a b s t r a c t

It is well-known that the VCG mechanism is optimal for a buyer procuring one unit from a set of
symmetric suppliers. For procuring a unit from asymmetric suppliers, Myerson’s optimal mechanism can
be interpreted as a transformation of the VCGmechanism – both in terms of its allocation and payment –
using the virtual cost function. For amore general setting inwhichmultiple units need to be procured from
asymmetric suppliers under an arbitrary set of feasibility constraints, we analyze the same transformation
of the VCGmechanism.We show that thismechanism is optimal if the feasible region is a polymatroid. We
also present an example of a non-polymatroidal feasible region for which this mechanism is sub-optimal.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The theory of mechanism design in procurement, to a large
extent, is concernedwith the design of two classes ofmechanisms:
(1) Optimal mechanisms are the ones that maximize the expected
surplus of the buyer. (2) Efficient mechanisms are those that
maximize the expected social surplus, which includes both the
buyer’s expected surplus and the total expected surplus of the
suppliers. Consider the simple setting of a buyer who wants to
procure one unit of a product from a set of symmetric suppliers,
each with a privately-known cost of production. It is well known
that the VCG mechanism is both efficient and optimal in this
setting; see e.g. [11]. In this note,we focus on the following general,
constrained procurement setting:

A buyerwants to procuremultiple units of a product fromeither
a set N = {1, 2, . . . ,N} of asymmetric suppliers, each with
a privately-known unit-cost, or an outside option with unit-
cost R. We denote the outside option as supplier N + 1. Each
supplier i ∈ N has a privately-known unit-cost ci, which is a
realization of a random variable with a continuous cumulative
distribution function Fi and a continuous probability density
function fi on the support [c i, c i]. The distributions of the costs
of the suppliers are independent and common knowledge. The
allocations made to the suppliers are subject to a set, denoted
by FEAS, of feasibility constraints. The goal is to find an optimal
mechanism for the buyer.
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Feasibility constraints play an important role in procurement.
This includes limitations on the allocations given to individual
and/or subsets of suppliers. For example, to promote supplier
diversity, AT&T [1] targets up to 15% of their total spend
from minority businesses and up to 1.5% from service-disabled-
veteran businesses. The restriction that a certain minimum or
maximum percentage of business must be awarded to a specific
class of suppliers becomes a feasibility constraint for a buying
firm. Similarly, to insulate from disruption risks like those from
earthquakes, many companies in the engineering sector have split
their businesses across network of suppliers in multiple countries
(see [12]). For strategic reasons, buying firms often impose lower
and upper bounds on the number of suppliers selected and on
the allocation given to each selected supplier; Mars Inc., a major
producer of confectionery, uses such bounds in the procurement of
its rawmaterial (see [10]). The Hackett Group (a business advisory
firm) recommends its clients to split their business amongmultiple
vendors, giving 80% of their business to preferred vendors and the
remaining 20% to backup vendors (see [13]). For other examples of
several practically important feasibility constraints, we refer the
readers to [2].

For every i ∈ N , let ψi(c) = c + Fi(c)/fi(c) be a ‘‘virtual’’ cost
function for all c ∈ [c i, c̄i]. We make the standard assumption that
ψi(·) is strictly increasing for all i ∈ N . Let ψ−1

i (v) be the inverse
of the function ψi(·) for all i ∈ N ; i.e., ψ−1

i (v) is equal to (i) c i if
v ≤ ψi(c i), (ii) c if ∃c ∈ [c i, c i] such that v = ψi(c), and (iii) c i
if v ≥ ψi(c i). Let b = (b1, b2, . . . , bN) denote the vector of bids
of the suppliers, b−i denote the vector of bids excluding the bid
of supplier i ∈ N , Q = (Q1,Q2, . . . ,QN+1) denote the vector of
allocations given to the suppliers, and M = (M1,M2, . . . ,MN+1)
denote the vector of payments given to the suppliers. For a bid
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vector b, let ψ(b) = (ψ1(b1), ψ2(b2), . . . , ψN(bN)) denote the
vector of virtual bids of the suppliers.

Using standard arguments in mechanism design (see e.g., [14]),
the following sealed-bid mechanism, denoted by (QOPT ,MOPT ), is
optimal under the above setting: For a given b:
• The allocation vector QOPT (b, R) solves:

min
Q

N
i=1

ψi(bi)Qi + R · QN+1

s.t. Q ∈ FEAS.

• The payment given to supplier i ∈ N is

MOPT
i (b, R) = biQ OPT

i (b, R)

+

 c̄i

bi
Q OPT
i (z, b−i, R) dz (M-OPT)

and the payment given to supplier N + 1 is MOPT
N+1(b, R) =

R · Q OPT
N+1(b, R).

We refer to the above mechanism as OPT. Next, we define the
VCG mechanism (see e.g., [11]), denoted by {QVCG,MVCG

}. For a
given b:
• The allocation vector QVCG(b, R) solves:

min
Q

N
i=1

biQi + R · QN+1

s.t. Q ∈ FEAS.

(Q-VCG)

• Define H(b, R) =
N

i=1 biQ
VCG
i (b, R) + R · Q VCG

N+1(b, R) as
the optimal value of the objective function in (Q-VCG). Let
H−i(b, R) = H(b, R)− biQ VCG

i (b, R) for all i ∈ N . The payment
given to supplier i ∈ N is

MVCG
i (b, R) = H(c̄i, b−i, R)− H−i(b, R)

and the payment given to supplier N + 1 is MVCG
N+1(b, R) =

R · Q VCG
N+1(b, R).

Let us now consider the special case of procuring one unit in
the absence of the outside option (i.e., R = ∞). Let (1̃) and
(2̃) denote the supplier with the lowest and second-lowest bid,
respectively. Also, let (1) and (2) denote the supplier with the
lowest and second-lowest virtual bid, respectively. Then, in this
special case, VCG procures the unit from supplier (1̃) and pays him
b(2̃); i.e., the highest amount supplier (1̃) can bid and still be the
lowest-bid supplier. The optimal mechanism OPT procures the unit
from supplier (1) and pays him the highest amount supplier (1)
can bid and still be the lowest-virtual-bid supplier. That is, OPT pays
supplier (1) the amountψ−1

(1) [ψ(2)(b(2))]; this is easy to derive using
(M-OPT). Motivated by this parallel between VCG and OPT in this
special case, we define a transformation of VCG which we refer to
as the ‘‘virtual’’ VCG mechanism (VVCG).

For a bid vector b and i ∈ N , let ψ(b) =

ψ1(b1), ψ2(b2), . . . ,

ψN(bN)

denote the vector of virtual bids of the suppliers and

ψ̂i(b) =

ψ−1

i [ψ1(b1)], ψ−1
i [ψ2(b2)], . . . , ψ−1

i [ψN(bN)]

. The

VVCG mechanism, denoted by {QVVCG,MVVCG
}, is a sealed-bid

mechanism defined as follows:
• The allocation given to supplier i ∈ {1, 2, . . . ,N + 1} is

Q VVCG
i (b, R) = Q VCG

i (ψ(b), R).
• The payment given to supplier i ∈ N is

MVVCG
i (b, R) = MVCG

i (ψ̂i(b), ψ
−1
i (R)) (M-VVCG)

and the payment given to supplier N + 1 is MVVCG
N+1 (b, R) =

R · Q VVCG
N+1 (b, R).

For the special case of procuring one unit in the absence of
the outside option, the VVCG mechanism simply reduces to the
mechanism in which the supplier with the lowest virtual bid is
selected and paid the highest amount that the supplier could bid
to be selected. Thus, it is identical to OPT for this case.

VVCG-like mechanisms have precedence in the literature. For
example, Hartline [9] considers a forward setting in which a seller
sells multiple units of a product to a set of N bidders with a
restriction that each bidder receives an allocation of either 0 or
1 unit. For this setting, the author proposes an optimal sealed-
bid mechanism, which is similar to the VVCG mechanism in spirit.
Another example is Duenyas et al. [4] who consider a buyer
procuring an endogenously determined quantity of a product from
a set ofN suppliers. For this setting, the authors propose an optimal
descending mechanism in which the use of virtual cost functions
in designing the allocations and payments given to the suppliers is
similar to that used in the VVCG mechanism.

VVCG is a natural extension of the VCG mechanism and uses
virtual cost functions that play a prominent role in Myerson’s
seminal paper [14]. We know that VCG is an efficient mechanism.
We also know from [4,9] that VVCG is optimal for the specific
settings considered in those studies. Given this, it is interesting to
understand if VVCG is always an optimal mechanism. This note
provides a definitive answer to this question by demonstrating
VVCG’s optimality for a large variety of settings (i.e., polymatroid
feasible allocation sets) and by showing that VVCG fails to be
optimal in other settings. The discovery of this unexpected result
is the main contribution of our work. Somewhat surprisingly, the
proof of our result follows quite easily from existing results—thus,
the proof itself is not claimed to be a significant contribution.

A closely connected paper to ours is Gupta et al. [8]. The authors
of that paper propose an optimal descending mechanism for
procuring multiple units of a product from a set of suppliers with
a restriction of polymatroidal feasibility constraints. Their results
can also be used to prove the optimality of the VVCG mechanism.
In order to keep our proofs self-contained, we have presented an
alternate proof for the optimality of the VVCG mechanism.

2. Optimality of VVCG

Let g : 2N ∪{N+1}
→ R+ be a non-decreasing and submodular

set function with g(∅) = 0. That is, we have: (1) g(S) ≤ g(T ), for
all S ⊆ T ⊆ N ∪ {N + 1} (non-decreasing), and (2) g(S ∪ {s})−

g(S) ≥ g(T ∪ {s}) − g(T ), for all S ⊆ T , s ∈ N ∪ {N + 1} \ T
(submodular). The set of polymatroid feasibility constraints are
defined as follows:

Pg =


Q ∈ RN+1

+
:


i∈S

Qi ≤ g(S) ∀ S ⊆ N ∪ {N + 1},

N+1
i=1

Qi = g(N ∪ {N + 1})


.

Examples of papers that consider polymatroid feasibility con-
straints in an auction framework include [3,7,8]. We now state our
main result.

Theorem 1. Let g be a non-decreasing and submodular set function
with g(∅) = 0. If FEAS = Pg , then the VVCG mechanism is identical
to OPT, and therefore optimal.

Proof. Fix an arbitrary bid vector b. By definition, QVVCG(b, R) =

QOPT (b, R) and MVVCG
N+1 (b, R) = MOPT

N+1(b, R). Therefore, Theorem 1
can be established if we show that MVVCG

i (b, R) = MOPT
i (b, R) for

all i ∈ N under polymatroidal feasibility constraints. To prove this,
we exploit the fact that QVCG(ψ(b), R) for polymatroidal feasibility
constraints can be explicitly obtained by the well-known greedy
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