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a b s t r a c t

An optimal strategy in a Markov decision problem is robust if it is optimal in every decision problem (not
necessarily stationary) that is close to the original problem. We prove that when the state and action
spaces are finite, an optimal strategy is robust if and only if it is the unique optimal strategy.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Sequential decision problems are used by practitioners in var-
ious areas. To properly analyze such a problem and to find an
optimal strategy, one needs to provide the stage payoff, the transi-
tions, and the discount factor after every possible history. In many
cases, it is impossible or too costly to know the data of the problem
precisely, and then only estimation of the data is available to the
decision maker. Thus one cannot analyze the actual decision prob-
lem, but only an approximating one, and an optimal strategy in the
model that is studiedmight be suboptimal in the actual one.We say
that an optimal strategy in a given decision problem P is robust if
it remains optimal in every decision problem that is close to P .

In many cases, to simplify the analysis one approximates a non-
stationary decision problem by a stationary one. This way one
smoothes out fluctuations in stage payoff, transitions, or discount-
ing that are due to predictable or unpredictable changes in the en-
vironment. For example, consider a lake that is used for fishing,
and suppose that the increase rate of the population is stationary
and known. The fishermen can then predict the evolution of the
fish population as a function of the amount of fish they extract, yet
the fish prices as well as the interest rate in the market fluctuate
randomly. If these last two variables are approximately stationary,
then any robust optimal strategy in the fictitious stationary prob-
lem is also optimal in the actual one.

In this note we prove that an optimal strategy in a stationary
decision problem with finitely many states and actions is robust
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if and only if it is the unique optimal strategy, and by virtue of an
examplewe show that this result does not extend to decision prob-
lems with countably many states or actions. This result highlights
the extent to which an optimal strategy remains optimal when the
data of the decision problem is known only approximately.

2. The model and the main result

A decision problem is defined over a finite set of states S. In each
state s ∈ S the decision maker has a finite collection of available
actions, denoted by As. Denote A = (As)s∈S . We letΞ := {(s, a): s ∈

S, a ∈ As} be the set of all pairs of state and an action available
at that state. Let HS,A := ∪

∞

n=0 (Ξ n
× S) be the space of all finite

histories andH+

S,A := ∪
∞

n=1 Ξ n be the space of all histories including
the current action. The notation hn

= (s1, a1, . . . , sn) ∈ Ξ n−1
× S

will always denote a possible history at stage n. Given an infinite
play h∞

= (s1, a1, s2, a2, . . .) ∈ Ξ∞ and n ∈ N, we denote by
hn

= (s1, a1, . . . , sn) ∈ Ξ n−1
× S the possible history at stage n

that h∞ induces. For every finite set S denote by ∆(S) the set of
probability distributions over S.

Definition 1. A decision problem over the set of states S and the
sets of actions A = (As)s∈S is a triplet P = (q, r, λ) where

• q : H+

S,A → ∆(S) is a transition function;
• r : H+

S,A → R is a bounded payoff function; and
• λ : HS,A → (0, 1) is a discounting function.

A decision problem evolves as follows. The initial state s1 ∈ S
is given. At each stage n ≥ 1, given the history so far hn

= (s1, a1,
. . . , sn) ∈ HS,A, the decision maker chooses an action an ∈ Asn ,
receives the stage payoff r(hn, an) and a new state sn+1 is chosen
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according to q(hn, an). The decisionmaker’s goal is tomaximize the
discounted sum

∞
m=1


r(hm, am)λ(hm)


k<m

(1 − λ(hk))


. (1)

Because the payoff function r is bounded, so is the sum in (1). Note
that the transition and stage payoff depend on the current action
of the decision maker while the discount factor does not depend
on it. Nothing in what follows would have changed if the discount
factor depended on the decision maker’s current action.

Definition 2. A strategy is a function σ that assigns an action in Asn

to every history hn
= (s1, a1, . . . , sn) ∈ HS,A.

Denote by S the set of all strategies.
Every strategy σ , together with the initial state s1, induces a

probability distribution Ps1,σ over the space of plays Ξ∞ endowed
with the σ -algebra generated by all finite cylinders. Denote by
Es1,σ the corresponding expectation operator. The expected payoff
induced by a strategy σ is

γ (s1, σ ) := Es1,σ


∞

m=1

r(hm, am)λ(hm)

k<m

(1 − λ(hk))


.

We will also be interested in the expected payoff given a history
hn

∈ HS,A, which is

γ (hn, σ ) := Es1,σ


∞

m=n

r(hm, am)λ(hm)

k<m

(1 − λ(hk)) | hn


.

This is the expected total payoff assuming that the history hn

occurred. Note that the payoff γ (hn, σ ) is discounted to stage n.
The value is the maximal payoff that the decision maker can

guarantee.

Definition 3. The value of the decision problem P at the history
hn

∈ HS,A is

v(hn) := sup
σ∈S

γ (hn, σ ).

A strategyσ ∗ that attains the supremum in the definition of v(hn) is
called an optimal strategy at hn. A strategy is optimal if it is optimal
at all finite histories in HS,A.

Because the sets S and A are finite, the space of all strategies
is compact in the product topology (when S and A are endowed
with the discrete topology). Moreover, the payoff function σ →

γ (s1, σ ) is continuous in this topology for every s1 ∈ S. It follows
that an optimal strategy exists. Since the payoff function r is
bounded, our model is equivalent to a Markov decision problem
with positive bounded payoffs, and therefore by Theorem 7.2.5
in [3] the set of optimal strategies can be characterized using
Bellman’s principle of optimality.

Theorem 1. The strategy σ ∗ is optimal if and only if for every history
hn

∈ HS,A the action σ ∗(hn) attains the maximum in

max
a∈Asn


λ(hn)r(hn, a) + (1 − λ(hn))


s∈S

q(hn, a)[s]v(hn, a, s)


. (2)

As mentioned before, in applications we usually do not know
the exact payoffs, transitions, and discounting function. The L∞

metric between decision problems is one way to measure the dis-
crepancy between an actual decision problem and an approximat-
ing one.

Definition 4. Let P = (q, r, λ) and P = (q,r,λ) be two decision
problems defined over the same set of states S and sets of actions
A = (As)s∈S . The distance between P and P is

d(P , P ) := max

 sup
hn∈HS,A

|λ(hn) −λ(hn)|,

sup
(hn,an)∈H+

S,A

∥q(hn, an) −q(hn, an)∥∞,

sup
(hn,an)∈H+

S,A

|r(hn, an) −r(hn, an)|

 .

In this definition, ∥·∥∞ is the supremumnorm: ∥x∥∞ = maxdi=1 |xi|
for every vector x = (xi)di=1 ∈ Rd.

The value function is continuous with respect to the distance
d(·, ·). We now define the concept of a robust optimal strategy,
which is the main interest of this note.

Definition 5. An optimal strategy σ ∗ is robust in the decision
problemP if it is optimal in every decision problem P that is close
to P : there is δ > 0 such that σ ∗ is optimal in every decision
problem P that satisfies d(P , P ) < δ.

As the next example shows, an optimal strategy, even when it
is unique, need not be robust.

Example 1. Suppose that S = N = {1, 2, 3, . . .} and As = {α, β}

for every s ∈ S. Let λ0 ∈ (0, 1) be arbitrary and consider the
decision problem P = (q, r, λ) defined by

• q(hn, a)[n + 1] = 1 for every hn
∈ HS,A and a ∈ A: transition is

deterministic and independent of the decision maker’s action.
• r(hn, α) = 1 and r(hn, β) = 1 −

1
n for every hn

∈ HS,A.
• λ(hn) = λ0 for every hn

∈ HS,A.

The unique optimal strategy σ ∗ is to play α after every history;
this strategy guarantees payoff 1. However, since the payoffs
(r(hn, β))n∈N converge to 1 as the history’s length increases, for
every ε > 0 there is a decision problem P = (q,r, λ) that satisfies
(a) d(P , P ) < ε, (b)r(hn, α) = 1 for every hn

∈ HS,A, and (c)r(hn, β) > 1 for every history hn
∈ HS,A for which n is sufficiently

large. By Theorem 1 the strategy σ ∗ is not optimal for P .

In Example 1, the number of states is countable and there
are two actions in each state. One can easily construct an analog
example with two states and countably many actions.

As we now argue, though in general an optimal strategy may
fail to be robust, when the decision problem is stationary there is
a simple criterion for determining whether an optimal strategy is
robust.

Definition 6. A decision problem is called stationary if the
functions q, r , and λ depend on hn only through sn, that is,
q(hn, a) = q(hn, a), r(hn, a) = r(hn, a), and λ(hn) = λ(hn)
for every two histories hn

= (s1, a1, . . . , sn) ∈ HS,A andhn =

(s1,a1, . . . ,sn) ∈ HS,A for which sn =sn, and every action a ∈ Asn .

A strategy σ is stationary if σ(hn) depends on hn only through sn,
that is, σ(hn) = σ(hn), for every two histories hn

= (s1, a1, . . . , sn)
andhn = (s1,a1, . . . ,sn) for which sn = sn. By [1], a stationary
decision problem has a stationary optimal strategy.

Our main result is as follows.

Theorem 2. An optimal strategy σ ∗ of a stationary decision problem
with finitely many states and actions P is robust if and only if it is the
unique optimal strategy in P .
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