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a b s t r a c t

This paper focuses on solving a finite horizon semi-Markov decision process with multiple constraints.
We convert the problem to a constrained absorbing discrete-time Markov decision process and then to
an equivalent linear program over a class of occupancy measures. The existence, characterization and
computation of constrained-optimal policies are established under suitable conditions. An example is
given to demonstrate our results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

ConstrainedMarkov decision processes (MDPs) form an impor-
tant class of stochastic control problems, which frequently arise in
the real-world situations such as computer networks, data com-
munications, resource-sharing systems and so on. A large amount
of literature has been developed for solving constrained MDPs;
see, for instance, [1,2,5,9,13] on the discrete-timeMDPs (DTMDPs),
[6,10,11,19] on the continuous-time jump MDPs (CTJMDPs), and
[4,7,6] on the semi-Markov decision processes (SMDPs). In these
references, most of them deal with constrained problems with in-
finite horizons, while only a few are related to those with finite
horizons [5,6,17,18]. For the issue of finite horizon constrained op-
timality, the studies in [5,17,18] are limited to the case of DTMDPs,
and the one in [6] treats finite-step SMDPs,which can be directly re-
duced to finite horizon DTMDPs due to that the number of jumps
is fixed therein. Therefore, to our knowledge, the current works on
finite horizon constrained MDPs are concentrated on the case of
discrete-time processes, whereas the case for continuous-time pro-
cesses has not been explored yet. In the meantime, however, the
finite horizon optimality in continuous-time often provides more
realistic models than the discrete-time ones because it takes into
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account the fact that the time may evolve continuously, which has
received great concerns and interests inmany applications [15,16].
Moreover, since the number of jumps during a fixed time horizon
becomes random in continuous-time processes, the associated ar-
guments and techniques in [5,6,17,18] for discrete-time processes
are not suitable to the continuous-time ones. Hence, finite hori-
zon constrained optimality for continuous-time processes is an un-
solved but desirable problem.

This paper is devoted to investigating continuous-time finite
horizon constrained SMDPs with multiple constraints. The state
and action sets are Polish spaces, while the reward functions
are assumed to be bounded. Our aim is to obtain a so-called
constrained-optimal policy that maximizes an objective reward
over a finite horizon in a set of policies satisfying given constraints.
We focus on establishing the existence, characterization and
computation of constrained-optimal policies. Compared with
the well-known reduction of finite-step SMDPs to finite horizon
DTMDPs as in [6], we convert the continuous-time finite horizon
SMDPs to infinite horizon DTMDPs with a two dimension state
space of pairs of jump times and original states, where the
associated one-stage reward functions and transition probabilities
include the current jump time and are very different from those
in the reduction of finite-step SMDPs; see Section 3.1 for details.
Since the transition probabilities of the converted DTMDPs are
sub-stochastic, we further reformulate the converted infinite
horizon DTMDPs as absorbing DTMDPs under Condition 3.1. In
the framework of absorbing DTMDPs [8], we introduce occupancy
measures and discuss their properties (see Lemma 3.1), via
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which the continuous-time finite horizon constrained SMDPs are
eventually transformed to an equivalent linear program (LP).
Moreover, following the results in [8] for absorbing DTMDPs,
we propose suitable conditions and prove the existence of a
randomized stationary constrained-optimal policy and an N-
deterministic constrained-optimal policy (see Theorem 3.2). We
also introduce assumptions that involve a weight function, under
which the equivalent LP is solvable and constrained-optimal
policies can be derived (see Theorem 3.3). Finally, we apply our
results to a simple maintenance problem, which is described by a
finite horizon constrained SMDP with one constraint, finite states
and actions. The constrained-optimal value and a 1-randomized
constrained-optimal policy have been computed by the numerical
experiment.

The structure of this paper is as follows. Section 2 formulates
the control model and the constrained problem we are interested
in. Our main results on the existence, characterization and compu-
tation of constrained-optimal policies are stated in Section 3. An
example is given to illustrate our results in Section 4.

2. The control model

Notation. If X is a Polish space (that is, a complete and separable
metric space), we denote byB(X) the Borelσ -algebra, byP (X) the
set of all probability measures on B(X), by M(X) the space of all
finite nonnegative measures on B(X), and moreover, by Cb(X) the
set of all bounded continuous functions on X .

We consider a constrained SMDP model with the following
objects:
E, A, (A(x), x ∈ E),Q (·, · | x, a), r0(x, a),

{rk(x, a), dk, k = 1, . . . ,N}

, (2.1)

where E is the state space and A is the action set, which are assumed
to be Polish spaces, respectively; A(x) ∈ B(A) denotes the set
of admissible actions at state x ∈ E. The transition mechanism
of the SMDP is defined by the semi-Markov kernel Q (·, ·|x, a) on
R+ × E given K , where R+ = [0, +∞), and K = {(x, a) | x ∈

E, a ∈ A(x)} denotes the set of feasible state-action pairs and is
assumed to be in B(E × A). If an action a ∈ A(x) is selected at
state x, then for all t ∈ R+ and D ∈ B(E), Q (t,D | x, a) is the
joint probability that the sojourn time in state x is not greater than
t ∈ R+, and the next state is in D. Furthermore, the function r0 on
K denotes the objective reward rate, while the functions r1, . . . , rN
on K represent the constrained reward rates. We assume that all of
the reward functions rk are bounded. Finally, the real numbers dk
are constraint constants.

Remark 2.1. The semi-Markov kernel Q can be partitioned as
shown below:

Q (t,D|x, a) =


D
F(t|x, a, y)p(dy|x, a)

∀t ∈ R+,D ∈ B(E), (x, a) ∈ K , (2.2)

where F(·|x, a, y) denotes the sojourn time distribution in state x
when action a is chosen and the next state is to be y, and p(·|x, a)
is the transition law of the system states.

We now describe how an SMDP evolves. In an SMDP, the con-
troller observes the system states continuously in time. Suppose
that the system occupies state x0 ∈ E at the initial time t0 ∈ R+,
then the controller chooses an action a0 ∈ A(x0) according to some
rule. As a consequence of this action choice, the system jumps to
state x1 ∈ E after a sojourn time θ1 ∈ R+ in x0, in which the transi-

tion law is subject to the semi-Markov kernel Q . At time (t0 + θ1),
the controller chooses an action a1 ∈ A(x1) according to some rule
and the same sequence of events occur. The SMDP evolves in this
way and we obtain an admissible history hn of the SMDP up to
the nth jump time, i.e., hn = (t0, x0, a0, θ1, x1, a1, . . . , θn, xn). We
set tk = tk−1 + θk, k = 1, 2, . . . , n, representing the jump times
of the SMDP. Then, a history hn can be equivalently rewritten as
hn = (t0, x0, a0, t1, x1, a1, . . . , tn, xn).

To specify rules for the controller to choose actions, policies are
needed. To this end, for eachn ≥ 0, letHn = (R+×E×A)n×(R+×E)
denote the set of all admissible histories of the SMDP up to the nth
jump, which is endowed with the Borel σ -algebra

σ({(a1, b1) × D1 × Γ1 × · · · × (an, bn) × Dn × Γn :

(ai, bi) ⊂ [0, +∞),Di ∈ B(E), Γi ∈ B(A), 1 ≤ i ≤ n}).

Then, a randomized history-dependent policy (or simply a policy)
π = {πn, n ≥ 0} is a sequence of stochastic kernels πn on A
given Hn satisfying πn(A(xn) | hn) = 1 for every hn ∈ Hn, n =

0, 1, 2, . . . . The set of all policies is denoted by Π . In most cases,
however, some special policies as below are useful.

Definition 2.1. (a) A randomized Markov policy π = {φn} is a
sequence of stochastic kernels φn on A given R+ × E such that
φn(A(xn) | tn, xn) = 1 for every (tn, xn) ∈ R+ × E and n ≥ 0, where
(tn, xn) represents the nth jump time and the post-jump state. If,
furthermore, φn are independent of n, it is said to be randomized
stationary. In this case,wewriteπ = {φ, φ, . . .} asφ for simplicity.

(b) A deterministic Markov policy π = {fn} is a sequence of
measurable functions fn : R+ × E → A such that fn(tn, xn) is in
A(xn) for every (tn, xn) ∈ R+ × E and n ≥ 0. If, furthermore, fn
are independent of n, it is said to be deterministic stationary, and
π = {f , f , . . .} is written as f .

We denote by ΠRM , ΠRS, ΠDM and ΠDS the families of all
randomizedMarkov, randomized stationary, deterministicMarkov
and deterministic stationary policies, respectively. Obviously,
ΠRS ⊂ ΠRM ⊂ Π , and ΠDS ⊂ ΠDM ⊂ Π .

For each n ≥ 0, we denote by Tn the random variable (r.v.)
of the nth jump time of the SMDP, by Θn+1 the r.v. of the so-
journ time between the nth and (n + 1)th jumps, by Xn the
r.v. of the post-jump state at Tn, and by An the r.v. of the ac-
tion chosen at Tn. Note that Tn, Θn+1, Xn and An are r.v.s defined
on a same measurable space (Ω, F ), where the sample space
Ω = (R+×E×A)∞


{(t0, x0, a0, θ1, x1, a1, . . . , θk, xk, ak, ∞, x∞,

a∞, ∞, x∞, a∞, . . .)|t0 ∈ R+, θ1 ∈ R+, . . . , θk ∈ R+, xl ∈ E, al ∈

A, for each 0 ≤ l ≤ k, k ≥ 0} with an isolated state x∞ and an
isolated action a∞, and the Borel σ -algebra F = B(Ω), the small-
est σ -algebra which contains all finite products of sets of the form
((a, b) × D × Γ ) with (a, b) ⊂ [0, +∞],D ∈ B(E ∪ {x∞}), Γ ∈

B(A ∪ {a∞}). In fact, for each n ≥ 0 and any trajectory ω =

(t0, x0, a0, θ1, x1, a1, . . . , θn, xn, an, . . .) ∈ Ω , we can define

T0(ω) = t0, Tn+1(ω) = t0 + θ1 + · · · + θn+1,

Θn+1(ω) = θn+1, Xn(ω) = xn, An(ω) = an.

It is worth noting that since the sojourn time distribution
F(·|x, a, y) is concentrated on R+ for each (x, a) ∈ K and y ∈ E,
almost all the trajectories have finite sojourn times. Thus, we ig-
nore the trajectories that have infinite sojourn times in the fol-
lowing. Given the semi-Markov kernel Q , an initial time-state pair
(t, x) ∈ R+×E and a policyπ ∈ Π , by the Ionescu Tulcea theorem,
there exists a unique probabilitymeasure Pπ

(t,x) on (Ω, F ) such that

Pπ
(t,x)(T0 = t, X0 = x) = 1, (2.3)

Pπ
(t,x)(An ∈ Γ | T0, X0, A0, . . . , Tn, Xn)

= πn(Γ | T0, X0, A0, . . . , Tn, Xn), (2.4)
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