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a b s t r a c t

Weapply theta body relaxations to the Ki-cover problem and showpolynomial time solvability for certain
classes of graphs. In particular, we give an effective relaxation where all Ki-p-hole facets are valid, and
study its relation to an open question of Conforti et al. For the triangle free problem, we show for Kn that
the theta body relaxations do not converge by (n − 2)/4 steps; we also prove for all G an integrality gap
of 2 for the second theta body.
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1. Introduction

A common way to model a combinatorial optimization prob-
lem is as the optimization of a function over the set S ⊆ {0, 1}n of
characteristic vectors of the objects in question. When the objec-
tive function is linear, wemay replace S by its convex hull conv(S).
The problem can be solved efficiently ifwe can find a small descrip-
tion of this polytope. Since for NP hard problems we cannot expect
this, we look instead for approximations to conv(S). One possibility
is to use semidefinite approximations, as introduced by Lovász [9]
with the construction of the theta body of the stable set polytope of
a graph. Another famous example is the approximation algorithm
for the max cut problem due to Goemans and Williamson [2]. In
this paper we will use the semidefinite relaxations introduced by
Gouveia, Parrilo and Thomas [4] to analyze the Ki-cover problem.

Recall that Ki denotes the complete graph, or clique, on i
vertices. Given a graph G, let Kj(G) be the collection of cliques in
G of size j (usually, the graph is clear from context, and we write
Kj). A (possibly empty) collection C ⊂ Ki−1 is said to be a Ki-cover
if for each K ∈ Ki, there is some H ∈ C with H ⊂ K . In this case
we say that H covers K . The Ki-cover problem is, given a graph G
and a set of weights on Ki−1, to compute the minimum weight Ki-
cover. The case i = 2 ismore commonly known as the vertex cover
problem, in which we seek a collection C of vertices such that each
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edge in G contains at least one vertex from C . However, note that
the usage of ‘‘cover’’ is reversed here: the vertex cover problem is
the K2-cover problem, not the K1-cover problem.

A closely related problem, and the setting in which we will
prove our results, is the Ki-free problem. As before, we are given
a graph and a collection of weights on Ki−1. But now we seek the
maximum weight collection C ⊆ Ki−1 such that C is Ki-free. That
is, for each K ∈ Ki, there is some H ∈ Ki−1, with H ⊂ K and H ∉ C .
Again, the case i = 2 of this problem is well-known as the stable
set problem: we seek a maximum weight stable set C , where C is
stable if no two of its vertices are connected by an edge.

The vertex cover and stable set problems are related in the fol-
lowing sense: let G = (V , E) be a graph. Then a subset C of vertices
is a vertex cover if and only if V \ C is a stable set. The same is
true for the Ki-cover and Ki-free problems: a subset C ⊂ Ki−1 is
a Ki-cover if and only if Ki−1 \ C is Ki-free. Therefore, for a given
set of weights on Ki−1, optimal solutions to the two problems are
complementary, and so solving one solves the other.

In this paper, we consider the polytope associated with the Ki-
free problem. Let Pi(G) = conv({χS : S ⊂ Ki−1(G) and S is Ki-
free}), the convex hull of the incidence vectors of the Ki-free sets.
Note that Pi(G) ⊆ [0, 1]Ki−1(G).

As the Ki-free problem is NP-complete (see [1]), we cannot ex-
pect a small description of Pi(G) for general graphs G. However, for
certain classes of facets of Pi(G), Conforti, Corneil, andMahjoub [1]
show thatwe can solve the separation problem in polynomial time,
allowing us to optimize efficiently over a relaxation of Pi(G). We
provide a strictly tighter relaxation of Pi(G), improving their opti-
mization result, but without proving the existence of polynomial
separation oracles for any new family of facets.
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The structure of this paper is: in Section 2, we outline the main
algebraic machinery, theta bodies, a semidefinite relaxation hier-
archy. In Section 3 we show that the Ki-p-hole facets are valid on
⌈i/2⌉ level of the theta body hierarchy. Finally, in Section 4 we
focus on the triangle free problem. We show that in the case of
G = Kn, the theta body relaxations cannot converge in less than
(n − 2)/4 steps. We also use a result of Krivelevich [7] to show an
integrality gap of 2 for the second theta body.

2. Theta bodies

Theta bodies are semidefinite approximations to the convex
hull of an algebraic variety. For background, see [5,4]. Herewe state
the necessary results for this paper without proofs.

Let V ⊆ Rn be a finite point set. One description of the convex
hull of V is as the intersection of all affine half spaces containing V
(recall that f |V is the restriction of f to V ):

conv(V ) = {x ∈ Rn
: f (x) ≥ 0 for all linear f such that f |V ≥ 0}.

Since it is computationally intractable to find whether f |V ≥ 0, we
relax this condition. Let I be the vanishing ideal of V , i.e., the set
of all polynomials vanishing on V . Recall that f ≡ g mod I means
f − g ∈ I , and implies that f (x) = g(x) for all x ∈ V . A function f is
said to be a sum of squares of degree at most kmod I , or k-sos mod
I , if there exist functions gj, j = 1, . . . ,m with degree at most k,
such that f ≡

m
j=1 g

2
j mod I . If f is k-sos mod I for any k, it is clear

that f |V ≥ 0 since g2
j is visibly nonnegative on V . Therefore, we

make the following definition of THk(I), the k-th theta body of I:

THk(I) = {x ∈ Rn
: f (x) ≥ 0 for all linear f ≡ k-sos mod I}.

The reason why the theta bodies THk(I) provide a computationally
tractable relaxation of conv(V ) is that themembership problem for
THk(I) can be expressed as a semidefinite program, using moment
matrices that are reduced mod I .

For what follows, we will restrict ourselves to a special class of
varieties, and suppose that our variety V ⊆ {0, 1}n and is lower-
comprehensive; i.e., if x ≤ y componentwise, and y ∈ V , then
x ∈ V . Additionally, we will always assume that V contains the
canonical basis of Rn, {e1, . . . , en}, as otherwise we could restrict
ourselves to a subspace. All combinatorial optimization problems
of avoiding certain finite list of configurations, such as stable set,
Ki-free, etc., have lower-comprehensive varieties. The restriction
to this class is not necessary, but makes the theta body exposition
simpler. In particular, the ideal of a lower-comprehensive variety
has the following simple description.

Lemma 2.1. Let V be a lower-comprehensive subset of {0, 1}n. Then
its vanishing ideal is given by

I = ⟨x2j − xj : j = 1, . . . , n; xS : S ∉ V ⟩,

and a basis for R[V ] = R[x]/I is given by B = {xS : S ∈ V }, where
xS :=


i∈S xi is a shorthand used throughout the paper.

Another important fact about THk(I) in this setting (when I is a
real ideal) is that a linear inequality f (x) ≥ 0 is valid on THk(I) if
and only if f is actually k-sos modulo I . In Section 3, we will prove
that certain facet-defining inequalities of Pi(G) are also valid on its
theta relaxations THk(I) by presenting a sum of squares represen-
tation modulo the ideal. For now, we observe that by considering
degrees, we can get a bound on which theta bodies are trivial; that
is, equal to the hypercube [0, 1]n.

Lemma 2.2. Let V ⊆ {0, 1}n be lower-comprehensive, and suppose
that all elements x ∉ V have


j xj ≥ k. Let I be the vanishing ideal

of V . Then for l < k/2, TH l(I) = [0, 1]n.

Proof. Let f be linear with f ≡


j g
2
j mod I with each gj of degree

atmost l. Then f −


j g
2
j =: F ∈ I , and F has degree atmost 2l < k,

since deg(g2
j ) ≤ 2l. But the basis from Lemma 2.1 is a Groebner ba-

sis, and the only elements with degree less than k are x2j −xj, so F ∈

I ′ := ⟨x2j − xj; j = 1, . . . , n⟩. Thus THl(I) ⊇ THl(I ′) = [0, 1]n. �

Let Vk be the subset of V whose elements have at most k entries
equal to one. For convenience, we will often identify the elements
of V , characteristic vectors χS for S ⊆ {1, . . . , n}, with their
supports, via S ↔ χS . Given y ∈ RV2k we denote the reduced
moment matrix of y with respect to I to be the matrix MVk(y) ∈

RVk×Vk defined by

[MVk(y)]X,Y =


yX∪Y if X ∪ Y ∈ V ,
0 otherwise.

With these matrices we can finally give a semidefinite
description of THk(I).

Proposition 2.3. With I and V as before, THk(I) is the canonical
projection onto Rn via the coordinates (ye1 , . . . , yen) of the set

{y ∈ RV2k : MVk(y) ≽ 0 and y0 = 1}.

In particular, optimizing to arbitrary fixed precision over THk(I) can
be done in time polynomial in n, for fixed k.

Now we can consider the specific case of the Ki-free problem.
Here the variety V ⊆ RKi−1(G) is the set of characteristic vectors of
Ki-free subsets of Ki−1(G), Vk is the subset of V of elements of size
atmost k, and I is the vanishing ideal of V , described by Lemma 2.1.
Since the Kis in G are theminimal elements not in V , by Lemma 2.1
we can write the ideal I as follows.

I =


x2j − xj : j ∈ Ki−1(G);


j⊆K

xj : K ∈ Ki(G)


.

For example, let G be a triangle, with edges A, B, C , and consider
the triangle free problem on G. Then the ideal is

I = ⟨x2A − xA, x2B − xB, x2C − xC , xAxBxC ⟩,

and the variety V is as follows.

V = {∅, {A}, {B}, {C}, {A, B}, {A, C}, {B, C}} ≡ {0, 1, 2, 3, 4, 5, 6}.

Note that here, we again use our identification of sets with their
characteristic vectors. To avoid writing, e.g., y{A,C} or even yχ{A,C}

,
we label the elements of V by numbers as above. Then themoment
matrix MV2(y) is as follows:

MV2(y) =



y0 y1 y2 y3 y4 y5 y6
y1 y1 y4 y5 y4 y5 0
y2 y4 y2 y6 y4 0 y6
y3 y5 y6 y3 0 y5 y6
y4 y4 y4 0 y4 0 0
y5 y5 0 y5 0 y5 0
y6 0 y6 y6 0 0 y6

 .

Projecting the set {y : y0 = 1,MV2(y) ≽ 0} onto (y1, y2, y3) gives
TH2(I) for this graph.

3. Polynomial-time algorithm

A graph H is a Ki-p-hole if H is the union of G1, . . . ,Gp, each
a copy of Ki, where Gj and Gl share a common Ki−1 if and only if
j − l = ±1 mod p; see Fig. 1. Theorem 3.5 in [1] establishes that
for i ≥ 3 andodd p, the inequality


Ki−1(H) xj ≤ (

p−1
2 )(2i−3)+i−2

defines a facet of Pi(G) for each induced Ki-p-hole H of G. We will
show that the facets corresponding to induced Ki-p-holes are valid
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