Operations Research Letters 42 (2014) 156-160

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

A semidefinite approach to the *K*_i-cover problem

João Gouveia^a, James Pfeiffer^{b,*}

^a CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal ^b Department of Mathematics, University of Washington, Seattle, WA 98195, United States

ARTICLE INFO

ABSTRACT

of 2 for the second theta body.

Article history: Received 23 March 2013 Received in revised form 20 January 2014 Accepted 20 January 2014 Available online 30 January 2014

Keywords: Sums of squares relaxations Theta bodies Minimal K_i-cover problem Maximal K_i-free subgraph problem Tuza's conjecture

1. Introduction

A common way to model a combinatorial optimization problem is as the optimization of a function over the set $S \subseteq \{0, 1\}^n$ of characteristic vectors of the objects in question. When the objective function is linear, we may replace *S* by its convex hull conv(*S*). The problem can be solved efficiently if we can find a small description of this polytope. Since for NP hard problems we cannot expect this, we look instead for approximations to conv(*S*). One possibility is to use semidefinite approximations, as introduced by Lovász [9] with the construction of the *theta body* of the stable set polytope of a graph. Another famous example is the approximation algorithm for the max cut problem due to Goemans and Williamson [2]. In this paper we will use the semidefinite relaxations introduced by Gouveia, Parrilo and Thomas [4] to analyze the *K_i-cover problem*.

Recall that K_i denotes the complete graph, or clique, on i vertices. Given a graph G, let $\mathbf{K}_j(G)$ be the collection of cliques in G of size j (usually, the graph is clear from context, and we write \mathbf{K}_j). A (possibly empty) collection $C \subset \mathbf{K}_{i-1}$ is said to be a K_i -cover if for each $K \in \mathbf{K}_i$, there is some $H \in C$ with $H \subset K$. In this case we say that H covers K. The K_i -cover problem is, given a graph G and a set of weights on \mathbf{K}_{i-1} , to compute the minimum weight K_i -cover. The case i = 2 is more commonly known as the vertex cover problem, in which we seek a collection C of vertices such that each

* Corresponding author.

edge in *G* contains at least one vertex from *C*. However, note that the usage of "cover" is reversed here: the vertex cover problem is

We apply theta body relaxations to the K_i -cover problem and show polynomial time solvability for certain

classes of graphs. In particular, we give an effective relaxation where all K_i -p-hole facets are valid, and

study its relation to an open question of Conforti et al. For the triangle free problem, we show for K_n that

the theta body relaxations do not converge by (n-2)/4 steps; we also prove for all G an integrality gap

the K_2 -cover problem, not the K_1 -cover problem. A closely related problem, and the setting in which we will prove our results, is the K_i -free problem. As before, we are given a graph and a collection of weights on \mathbf{K}_{i-1} . But now we seek the maximum weight collection $C \subseteq \mathbf{K}_{i-1}$ such that C is K_i -free. That is, for each $K \in \mathbf{K}_i$, there is some $H \in \mathbf{K}_{i-1}$, with $H \subset K$ and $H \notin C$. Again, the case i = 2 of this problem is well-known as the stable set problem: we seek a maximum weight *stable set* C, where C is stable if no two of its vertices are connected by an edge.

The vertex cover and stable set problems are related in the following sense: let G = (V, E) be a graph. Then a subset C of vertices is a vertex cover if and only if $V \setminus C$ is a stable set. The same is true for the K_i -cover and K_i -free problems: a subset $C \subset \mathbf{K}_{i-1}$ is a K_i -cover if and only if $\mathbf{K}_{i-1} \setminus C$ is K_i -free. Therefore, for a given set of weights on \mathbf{K}_{i-1} , optimal solutions to the two problems are complementary, and so solving one solves the other.

In this paper, we consider the polytope associated with the K_i -free problem. Let $P_i(G) = \text{conv}(\{\chi_S : S \subset \mathbf{K}_{i-1}(G) \text{ and } S \text{ is } K_i$ -free}), the convex hull of the incidence vectors of the K_i -free sets. Note that $P_i(G) \subseteq [0, 1]^{\mathbf{K}_{i-1}(G)}$.

As the K_i -free problem is NP-complete (see [1]), we cannot expect a small description of $P_i(G)$ for general graphs G. However, for certain classes of facets of $P_i(G)$, Conforti, Corneil, and Mahjoub [1] show that we can solve the separation problem in polynomial time, allowing us to optimize efficiently over a relaxation of $P_i(G)$. We provide a strictly tighter relaxation of $P_i(G)$, improving their optimization result, but without proving the existence of polynomial separation oracles for any new family of facets.

© 2014 Elsevier B.V. All rights reserved.

E-mail addresses: jgouveia@mat.uc.pt (J. Gouveia), jamesrpfeiffer@gmail.com, jpfeiff@math.washington.edu (J. Pfeiffer).

The structure of this paper is: in Section 2, we outline the main algebraic machinery, *theta bodies*, a semidefinite relaxation hierarchy. In Section 3 we show that the K_i -*p*-hole facets are valid on $\lceil i/2 \rceil$ level of the theta body hierarchy. Finally, in Section 4 we focus on the triangle free problem. We show that in the case of $G = K_n$, the theta body relaxations cannot converge in less than (n - 2)/4 steps. We also use a result of Krivelevich [7] to show an integrality gap of 2 for the second theta body.

2. Theta bodies

Theta bodies are semidefinite approximations to the convex hull of an algebraic variety. For background, see [5,4]. Here we state the necessary results for this paper without proofs.

Let $V \subseteq \mathbb{R}^n$ be a finite point set. One description of the convex hull of *V* is as the intersection of all affine half spaces containing *V* (recall that $f|_V$ is the restriction of *f* to *V*):

 $\operatorname{conv}(V) = \{x \in \mathbb{R}^n : f(x) \ge 0 \text{ for all linear } f \text{ such that } f|_V \ge 0\}.$

Since it is computationally intractable to find whether $f|_V \ge 0$, we relax this condition. Let *I* be the vanishing ideal of *V*, i.e., the set of all polynomials vanishing on *V*. Recall that $f \equiv g \mod I$ means $f - g \in I$, and implies that f(x) = g(x) for all $x \in V$. A function *f* is said to be a sum of squares of degree at most $k \mod I$, or k-sos mod *I*, if there exist functions g_j , j = 1, ..., m with degree at most k, such that $f \equiv \sum_{j=1}^m g_j^2 \mod I$. If *f* is k-sos mod *I* for any k, it is clear that $f|_V \ge 0$ since g_j^2 is visibly nonnegative on *V*. Therefore, we make the following definition of TH_k(*I*), the k-th theta body of *I*:

 $TH_k(I) = \{x \in \mathbb{R}^n : f(x) \ge 0 \text{ for all linear } f \equiv k \text{-sos mod } I\}.$

The reason why the theta bodies $\text{TH}_k(I)$ provide a computationally tractable relaxation of conv(V) is that the membership problem for $\text{TH}_k(I)$ can be expressed as a semidefinite program, using *moment matrices* that are reduced mod *I*.

For what follows, we will restrict ourselves to a special class of varieties, and suppose that our variety $V \subseteq \{0, 1\}^n$ and is *lower-comprehensive*; i.e., if $x \leq y$ componentwise, and $y \in V$, then $x \in V$. Additionally, we will always assume that V contains the canonical basis of \mathbb{R}^n , $\{e_1, \ldots, e_n\}$, as otherwise we could restrict ourselves to a subspace. All combinatorial optimization problems of avoiding certain finite list of configurations, such as stable set, K_i -free, etc., have lower-comprehensive varieties. The restriction to this class is not necessary, but makes the theta body exposition simpler. In particular, the ideal of a lower-comprehensive variety has the following simple description.

Lemma 2.1. Let V be a lower-comprehensive subset of $\{0, 1\}^n$. Then its vanishing ideal is given by

$$I = \langle x_j^2 - x_j : j = 1, \dots, n; x^S : S \notin V \rangle$$

and a basis for $\mathbb{R}[V] = \mathbb{R}[x]/I$ is given by $B = \{x^S : S \in V\}$, where $x^S := \prod_{i \in S} x_i$ is a shorthand used throughout the paper.

Another important fact about $\text{TH}_k(I)$ in this setting (when I is a real ideal) is that a linear inequality $f(x) \ge 0$ is valid on $\text{TH}_k(I)$ if and only if f is actually k-sos modulo I. In Section 3, we will prove that certain facet-defining inequalities of $P_i(G)$ are also valid on its theta relaxations $\text{TH}_k(I)$ by presenting a sum of squares representation modulo the ideal. For now, we observe that by considering degrees, we can get a bound on which theta bodies are trivial; that is, equal to the hypercube $[0, 1]^n$.

Lemma 2.2. Let $V \subseteq \{0, 1\}^n$ be lower-comprehensive, and suppose that all elements $x \notin V$ have $\sum_j x_j \ge k$. Let I be the vanishing ideal of V. Then for l < k/2, $TH_l(I) = [0, 1]^n$.

Proof. Let *f* be linear with $f \equiv \sum_{j} g_j^2 \mod I$ with each g_j of degree at most *l*. Then $f - \sum_{j} g_j^2 =: F \in I$, and *F* has degree at most 2l < k, since deg $(g_j^2) \le 2l$. But the basis from Lemma 2.1 is a Groebner basis, and the only elements with degree less than *k* are $x_j^2 - x_j$, so $F \in I' := \langle x_j^2 - x_j; j = 1, ..., n \rangle$. Thus $\text{TH}_l(I) \supseteq \text{TH}_l(I') = [0, 1]^n$. \Box

Let V_k be the subset of V whose elements have at most k entries equal to one. For convenience, we will often identify the elements of V, characteristic vectors χ_S for $S \subseteq \{1, \ldots, n\}$, with their supports, via $S \leftrightarrow \chi_S$. Given $y \in \mathbb{R}^{V_{2k}}$ we denote the *reduced moment matrix* of y with respect to I to be the matrix $M_{V_k}(y) \in \mathbb{R}^{V_k \times V_k}$ defined by

$$[M_{V_k}(y)]_{X,Y} = \begin{cases} y_{X\cup Y} & \text{if } X \cup Y \in V, \\ 0 & \text{otherwise.} \end{cases}$$

With these matrices we can finally give a semidefinite description of $\text{TH}_k(I)$.

Proposition 2.3. With *I* and *V* as before, $TH_k(I)$ is the canonical projection onto \mathbb{R}^n via the coordinates $(y_{e_1}, \ldots, y_{e_n})$ of the set

$$\{y \in \mathbb{R}^{v_{2k}} : M_{V_k}(y) \geq 0 \text{ and } y_0 = 1\}$$

In particular, optimizing to arbitrary fixed precision over $TH_k(I)$ can be done in time polynomial in n, for fixed k.

Now we can consider the specific case of the K_i -free problem. Here the variety $V \subseteq \mathbb{R}^{\mathbf{K}_{i-1}(G)}$ is the set of characteristic vectors of K_i -free subsets of $\mathbf{K}_{i-1}(G)$, V_k is the subset of V of elements of size at most k, and I is the vanishing ideal of V, described by Lemma 2.1. Since the K_i s in G are the minimal elements not in V, by Lemma 2.1 we can write the ideal I as follows.

$$I = \left\langle x_j^2 - x_j : j \in \mathbf{K}_{i-1}(G); \prod_{j \subseteq K} x_j : K \in \mathbf{K}_i(G) \right\rangle.$$

For example, let *G* be a triangle, with edges *A*, *B*, *C*, and consider the triangle free problem on *G*. Then the ideal is

$$I = \langle x_A^2 - x_A, x_B^2 - x_B, x_C^2 - x_C, x_A x_B x_C \rangle,$$

and the variety V is as follows.

$$V = \{\emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}\} \equiv \{0, 1, 2, 3, 4, 5, 6\}$$

Note that here, we again use our identification of sets with their characteristic vectors. To avoid writing, e.g., $y_{\{A,C\}}$ or even $y_{\chi_{\{A,C\}}}$, we label the elements of *V* by numbers as above. Then the moment matrix $M_{V_2}(y)$ is as follows:

	$\int y_0$	y_1	y_2	y_3	y_4	y_5	y_6
	<i>y</i> ₁	y_1	y_4	y_5	y_4	y_5	0
$M_{V_2}(y) =$	<i>y</i> ₂	y_4	y_2	y_6	y_4	0	<i>y</i> ₆
$M_{V_2}(y) =$	y_3	y_5	y_6	y_3	0	y_5	<i>y</i> ₆
	y ₄	y_4	y_4	0	y_4	0	0
	y ₅	y_5	0	y_5	0	y_5	0
	Ly_6	0	y_6	y_6	0	0	y_6

Projecting the set $\{y : y_0 = 1, M_{V_2}(y) \ge 0\}$ onto (y_1, y_2, y_3) gives $TH_2(I)$ for this graph.

3. Polynomial-time algorithm

A graph *H* is a K_i -*p*-hole if *H* is the union of G_1, \ldots, G_p , each a copy of K_i , where G_j and G_l share a common K_{i-1} if and only if $j - l = \pm 1 \mod p$; see Fig. 1. Theorem 3.5 in [1] establishes that for $i \ge 3$ and odd *p*, the inequality $\sum_{\mathbf{K}_{i-1}(H)} x_j \le (\frac{p-1}{2})(2i-3)+i-2$ defines a facet of $P_i(G)$ for each induced K_i -*p*-hole *H* of *G*. We will show that the facets corresponding to induced K_i -*p*-holes are valid

Download English Version:

https://daneshyari.com/en/article/1142169

Download Persian Version:

https://daneshyari.com/article/1142169

Daneshyari.com