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a b s t r a c t

We study the stochastic lot-sizing problem with service level constraints and propose an efficient mixed
integer reformulation thereof.We use the formulation of the problem present in the literature as a bench-
mark, and prove that the reformulation has a stronger linear relaxation. Also, we numerically illustrate
that it yields a superior computational performance. The results of our numerical study reveals that the
reformulation can optimally solve problem instanceswith planning horizons over 200 periods in less than
a minute.
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1. Introduction

We address the stochastic lot sizing problem with α service
level constraints. A description of the problem is as follows. A
retailer faces stochastic demand over a finite planning horizon. Pe-
riod demands are independent but not necessarily identically dis-
tributed.When an order is placed, a fixed ordering cost is incurred.
Also, a holding cost is incurred for each unit of inventory carried
from one period to the next. Demands realized when the system
is out of stock are backordered. The retailer aims to plan her or-
ders so as to minimize the expected total cost over the planning
horizon while guaranteeing a pre-defined non-stockout probabil-
ity in any period. This problem appears inmany industrial environ-
ments where demand is non-stationary and stochastic (e.g. due to
short product life cycles), and supply requires fixed freight fees (e.g.
due to distant offshore suppliers). Also, α service level is the very
common in environments where stock-outs are rather costly and
independent of the magnitude or the duration of the stock-outs
(e.g. due to costly stoppages in production) [12].

Bookbinder and Tan [2] proposed a number of strategies for
this problem which differ with respect to the time epochs where
the decisions on when and how much to order are taken. One of
these strategies is the so-called static–dynamic uncertainty strat-
egy where a complete order schedule is fixed at the outset, and or-
der quantities are decided upon following an order-up-to policy at
each replenishment epoch after the actual inventory is observed.
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Because it offers a rigid order schedule, this strategy is particu-
larly appealing in material requirement planning, joint replenish-
ment, and shipment consolidation environments (see [5,12,6,7]).
Furthermore, it effectively hedges against demand uncertainty
(see [4,17]).

The current paper belongs to the growing literature on the ap-
plication of static–dynamic uncertainty strategy in stochastic lot
sizing. A significant progress has beenmade in this line of research
over the last decades. Silver [10] and Askin [1] studied the problem
under a backorder cost scheme. They proposed heuristics building
on the well-known Silver and Meal [11] heuristic. Bookbinder and
Tan [2] addressed the problemwith an α service-level constraint—
the very problem considered in the current study. They developed
a sequential method where an order schedule is obtained first,
and then order-up-to levels are determined. Tarim and Kingsman
[14] developed a mixed integer programming (MIP) formulation
for the same problem which determines the order schedule and
order-up-to levels simultaneously. Tarim and Kingsman [15], Tem-
pelmeier [16], and Rossi et al. [8] adapted this formulation to take
into account different service measures. Recently, Rossi et al. [9]
and Tarim et al. [13] developed computationally efficient special-
purpose algorithms where an optimal solution is obtained by iter-
atively solving a relaxed version of the problem that is formulated
and solved as a shortest-path problem.

The contribution of the current study is to present a reformula-
tion for the static–dynamic uncertainty strategy in the stochastic
lot sizing problem with α service level constraints. As opposed to
the special-purpose algorithms in the literature (see [9,13]), the re-
formulation is a deterministic equivalentMIPmodel. As such, it has
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the advantage of being at users’ disposal to be fed into commer-
cial solvers without the need of tailor-made computer programs.
We verify the efficiency of the reformulation both analytically and
numerically by comparing it against Tarim and Kingsman’s [14]
formulation—which we use as a reference. We first show that the
linear relaxation of the reformulation is stronger. Then, we numer-
ically illustrate that the reformulation is far more time-efficient.
The linear relaxation of the reformulation averages an integrality
gap of 0.2% for the test instances considered. As a result, the refor-
mulation can solve realistic-sized problem instances to optimality
in the order of seconds.

The reminder of the paper is organized as follows. In Section 2,
we set the notation and introduce the reference formulation. In
Section 3, we develop the reformulation. In Section 4, we provide
a comparison of the reference formulation and the reformulation.
In Section 5, we report the numerical experiments and obtained
results.

2. Notation and Tarim and Kingsman’s formulation

We consider an N-period planning horizon. The demands d1,
d2, . . . , dN are independent random variables with known distri-
bution functions. The fixed ordering cost is a per order. The holding
cost is h per unit per period. The minimum non-stockout probabil-
ity that should be attained in any period is α.

Tarim and Kingsman [14] developed the following MIP for-
mulation for solving the stochastic lot sizing problem under the
static–dynamic uncertainty strategy

min
N

t=1


aδt + hE{It}


(1)

subject to E{It} = E{St} − E{dt} t ∈ [1,N] (2)
E{St} ≥ E{It−1} t ∈ [1,N] (3)
E{St} − E{It−1} ≤ Mδt t ∈ [1,N] (4)

E{It} ≥

t
p=1


G−1
dt−p+1+···+dt (α) −

t
k=t−p+1

E{dk}

Ptp t ∈ [1,N] (5)

t
p=1

Ptp = 1 t ∈ [1,N] (6)

Ptp ≥ δt−p+1 −

t
k=t−p+2

δk t ∈ [1,N], p ∈ [1, t] (7)

E{It}, E{St} ≥ 0, δt , Ptp ∈ {0, 1} t ∈ [1,N], p ∈ [1, t] (8)
where the decision variables are comprised of
E{It} expected inventory level at the end of period t
E{St} expected post-replenishment inventory level (order-up-to

level if an order is scheduled, and expected opening inven-
tory level otherwise) at period t

δt binary variable that takes the value of 1 if an order is sched-
uled in period t , and 0 otherwise

Ptp binary variable that takes the value of 1 if themost recent or-
der prior to period t was in period t −p+1, and 0 otherwise.

Here, M is a sufficiently large positive number. The function
Gdt−p+1+···+dt (·) is the cumulative distribution of the random vari-
able dt−p+1+· · ·+dt . It is important to remark that it could be pos-
sible to obtain these convolutions in closed form if period demands
belong to the samedistribution family (e.g. normal and gammadis-
tributions), otherwise it is necessary to employ numerical meth-
ods. It is assumed that G is strictly increasing. Thus G−1 is uniquely
defined. This assumption holds if the probability density func-
tion of period demands are strictly positive within their domains
— which is the case for most commonly used demand distribu-
tions. It is also assumed, without loss of generality, that the initial

inventory position I0 (and hence its expectation E{I0}) is zero, and
an order is placed in the first period.

The model can be summarized as follows. The objective func-
tion (1)minimizes the expected total inventory ordering and hold-
ing costs over the planning horizon. It should be noted that this
model is designed for high service level regimes—as is usually
the case for α service level models. Hence, when computing the
expected holding costs, it is reasonable to approximate the ex-
pected inventory on-hand E{max(0, It)}, with the expected inven-
tory level E{It} (see [2,14]). Constraint (2) coordinates inventory
conservation by fixing the expected inventory carried forward to
the difference between the post-replenishment inventory level
and the expected demand. Constraint (3) rules out expected neg-
ative order quantities. Constraint (4) states that the expected
post-replenishment inventory level can only exceed the expected
opening inventory level if there is a scheduled order. Con-
straint (5) expresses the service level requirement. Here, the term
G−1
d−p+1+···+dt (α) is the minimum post-replenishment inventory

level in period t − p + 1 that is sufficient to provide the desired
service level in period t , given themost recent order prior to period
t was in period t − p + 1. Notice that this term can be calculated
offline. The constraint, thus, guarantees that the service level is sat-
isfied by bounding the expected inventory level at period t from
below, while conditioning on the timing of the most recent order
prior to period t . Constraint (6)makes sure that themost recent re-
plenishment period prior to any given period is unique. Constraint
(7) states that no order should be placed in between any given pe-
riod and its designated most recent replenishment period. Finally,
(8) sets variable domains.

3. Reformulation

The reformulation builds on the idea of re-defining the problem
by means of alternative decision variables which enable us to
provide a stronger linear relaxation of the overall problem. In
the following, we first introduce the preliminaries regarding the
reformulation, and then provide the new MIP model.

Let us consider a case where we are given the timing of two
consecutive replenishment periods, say periods i and j (i < j), and
refer to the time interval [i, j − 1] as the replenishment cycle. The
expected total cost to be incurred over the replenishment cycle can
be written as

a + h
j−1
t=i


y −

t
k=i

E{dk}


(9)

where y is the post-replenishment inventory level of the ith period.
Here, we remark that we approximate the expected inventory on-
hand E{max(0, y −

t
k=i dk)}, with the expected inventory level

y−
t

k=i E{dk}. This is also the case in Tarim andKingsman’smodel.
The expression above is increasing on y. Thus, in order to obtain a
lower cost, one would pick an order-up-to level as small as possi-
ble. However, in order to satisfy the α service level constraint, the
order-up-to level should be larger than or equal to G−1

di+···+dj−1
(α).

As a result, we can define a lower bound on the expected cycle
cost as

cij := a + h
j−1
t=i


G−1
di+···+dj−1

(α) −

t
k=i

E{dk}


. (10)

Furthermore, building on this lower bound, we can re-write the
expected cycle cost given in (9) as

cij + h(j − i)(y − G−1
di+···+dj−1

(α)) (11)

for all y such that y ≥ G−1
di+···+dj−1

(α). The first part of this expres-
sion can be regarded as the static, and the second part as the incre-
mental component of the expected total cycle cost. It is important
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