Operations Research Letters 42 (2014) 166-172

journal homepage: www.elsevier.com/locate/orl

Contents lists available at ScienceDirect

Operations Research Letters

Operations
Research
Letters

Scheduling unit-length jobs with precedence constraints of

small height

André Berger?, Alexander Grigoriev?, Pinar Heggernes ¢, Ruben van der Zwaan

—
@ CrossMark

b,*

2 Operations Research Group, Maastricht University, PO Box 616, NL-6200 MD Maastricht, The Netherlands
b Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, PO Box 513, NL-5600 MB Eindhoven, The Netherlands

¢ Department of Informatics, University of Bergen, PO Box 7803, N-5020 Bergen, Norway

ARTICLE INFO ABSTRACT

Article history:

Received 30 January 2012
Received in revised form

9 December 2013

Accepted 24 January 2014
Available online 5 February 2014

Keywords:

Scheduling

Precedence constraints
Computational complexity
Polynomial-time algorithms

We consider the problem of scheduling unit-length jobs on identical machines subject to precedence
constraints. We show that natural scheduling rules fail when the precedence constraints form a collection
of stars or a collection of complete bipartite graphs. We prove that the problem is in fact NP-hard on
collections of stars when the input is given in a compact encoding, whereas it can be solved in polynomial
time with standard adjacency list encoding. On a subclass of collections of stars and on collections of
complete bipartite graphs we show that the problem can be solved in polynomial time even when the
input is given in compact encoding, in both cases via non-trivial algorithms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The parallel machine scheduling problem with unit processing
times and given precedence constraints is a well-known variant
of general scheduling problems. An instance of this optimization
problem consists of a set | of n jobs with unit processing times, a
number m of parallel identical machines, and an acyclic digraph
D = (J,E), called the precedence graph, where a directed arc
(i,j) € E means that job i has to be completed before job j starts.
The goal is to find a schedule, basically an ordering of the jobs,
that respects the precedence constraints and that minimizes the
makespan, i.e., the completion time of the last job. Note that only
the graph D and the integer m are needed as input, since all jobs
have identical processing times.

This problem is long known to be NP-hard [13]. If the number
of machines is fixed and not part of the input, then it is solvable in
polynomial time for 1 and 2 machines [6,8], whereas for any other
fixed number m > 3 of machines the computational complexity
of the problem is still open [14]. With respect to fixed-parameter
tractability, it is known that the problem is W[2]-hard when
parameterized by the number of machines [2].

* Corresponding author.
E-mail addresses: a.berger@maastrichtuniversity.nl (A. Berger),
a.grigoriev@maastrichtuniversity.nl (A. Grigoriev), pinar@ii.uib.no (P. Heggernes),
g.rj.v.d.zwaan@tue.nl (R. van der Zwaan).

http://dx.doi.org/10.1016/j.0rl.2014.01.008
0167-6377/© 2014 Elsevier B.V. All rights reserved.

Due to the difficulty and the importance of the problem, consid-
erable attention has been devoted to cases where the precedence
graph D is restricted to a special graph class. Hu [11] presented
an algorithm which solves the problem in polynomial time if D
is either an in-forest or an out-forest. On unions of in-forests and
out-forests, Garey et al. [10] showed that the problem is NP-hard
when the number of machines is part of the input, but polynomial-
time solvable for any fixed number of machines. The polynomial-
time algorithm for the latter case was improved twice by Dolev
and Warmuth [4,5], who also showed polynomial-time solvability
when the number of machines is fixed and the precedence relation
isa “level order” [4].In addition, they gave a polynomial-time algo-
rithm for the case where both the height of the precedence graph
and the number of machines are bounded by a constant [3]. By the
results of Papadimitriou [12] and Gabow [7], if the complement of
the transitive closure of the precedence graph is an interval graph,
then the problem can again be solved in polynomial time. More re-
cently, Aho and Mékinen [1] gave a polynomial-time algorithm for
a fixed number of machines and digraphs of bounded maximum
degree and bounded height.

In this paper we give new results in the form of an NP-hardness
proof and polynomial-time algorithms for the case where the num-
ber of machines is part of the input and not bounded or fixed.
In particular we study how the problem behaves when the prece-
dence graph is restricted to collections of stars and collections of
complete bipartite graphs. As we illustrate with several examples
in Section 3, previously presented priority rules to schedule the

http://dx.doi.org/10.1016/j.orl.2014.01.008
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2014.01.008&domain=pdf
mailto:a.berger@maastrichtuniversity.nl
mailto:a.grigoriev@maastrichtuniversity.nl
mailto:pinar@ii.uib.no
mailto:g.r.j.v.d.zwaan@tue.nl
http://dx.doi.org/10.1016/j.orl.2014.01.008

A. Berger et al. / Operations Research Letters 42 (2014) 166-172 167

jobs, which are known to be optimal for some classes of prece-
dence graphs, fail to obtain an optimal schedule on collections of
stars or complete bipartite graphs. A star or a complete bipartite
graph can be compactly encoded as a pair of integers represent-
ing the number of vertices with in-degree 0 and out-degree 0. In
Section 4, we show that on collections of stars our problem is NP-
hard if the graph is compactly encoded, whereas it can be solved in
polynomial time if the graph is given as an adjacency list. The hard-
ness under compact encoding explains the failure of the simplistic
rules as at least a hard number theoretical problem must be solved.
In Section 5, we show that the problem can be solved in polyno-
mial time on a subclass of collections of stars, namely collections
of in-stars and out-stars, even when these are given in compact en-
coding. As an interesting contrast to the NP-hardness on compactly
encoded stars, in Section 6 we show that the problem can be solved
in polynomial time on a collection of compactly encoded complete
bipartite graphs.

2. Notation and terminology

For a positive integer n, we use [n] = {1, ..., n}. A digraph is
denoted by D = (J, E), where J is the set of vertices and E is the
set of arcs. An arc (i, j) € E is directed from i to j. The in-degree of a
vertexj, di, (j), is the number of arcs directed to it, and its out-degree
dout (j) is the number of arcs directed from it. A vertex of in-degree
(out-degree) 0 is called an in-leaf (out-leaf). A path in a digraph is
a sequence of vertices iy, iy, .. ., i, such that (i¢, ig41) is an arc for
1 < ¢ < p— 1. Acycle is a path whose first vertex is the same
as its last vertex. A digraph is acyclic if it does not contain a cycle.
Every partial order corresponds to an acyclic digraph; throughout
this paper we assume the input digraph to be acyclic. The height
of a digraph is the number of vertices in a longest path, which is
equivalent to the cardinality of a longest chain in the corresponding
partial order.

Given a digraph D = (J, E) with |J| = n and an integer m repre-
senting the number of machines, a feasible schedule for the parallel
machine scheduling problem with unit processing times is given by
amapping T :] — [n] that assigns jobs to time slots and satisfies:

1. (i) < t(j), forevery (i, j) € E, and
2. |{j €] | () = £}| < m, for every time slot £ € [n].

The makespan of a schedule 7 is the completion time of the last
job, i.e., maxg 7(j). Hence, it is always possible to achieve a
makespan of at most n. An optimal schedule is a schedule of
minimum makespan. The problem is to compute the minimum
makespan over all feasible schedules, given D and m.

An in-tree is a digraph, whose underlying undirected graph is
a tree, such that dy,(j) < 1 for everyj € J. Similarly, an out-tree
is a tree such that d;;,(j) < 1 for every j € J. An in-forest (out-
forest) is a collection of in-trees (out-trees). An in- and out-forest is
the union of an in-forest and an out-forest. We call D a star if the
undirected graph underlying D is a star. The center of a star with at
least three vertices is the only vertex that has degree at least 2. A
star D is an in-star if it is an in-tree, and an out-star if it is an out-
tree. A set consisting of in-stars and out-stars will be referred to
as a collection of in- and out-stars. In this paper, a complete bipartite
graph is a digraph, whose underlying undirected graph is complete
bipartite, where all the edges are directed from one bipartition to
the other.

A star with center c is uniquely defined by the pair (d;,(c),
dout (c)). We will call this a compact encoding of a star as opposed to
a graph is given as an adjacency list or adjacency matrix. Similarly,
a complete bipartite graph is uniquely defined by the number
of its in-leaves and out-leaves. Hence, every complete bipartite
graph can also be compactly encoded by a pair of integers. Note
that in a compact encoding of a collection of stars or complete

folfe

o
J/\o
O

oo

O/g e O -
of
\®
kS|
Q. fe Q| fo
o ® aneﬁ
1 2 9/ 4 \? 6 7 q 2 3 ‘9 5 6 7

time time

out-degree
in-degree

Fig.1. (Left)Largest
schedule.

,largest out-degree, largest in-degree. (Right) Optimal

bipartite graphs, it is not the number n of vertices (jobs) but the
number of stars or complete bipartite graphs (pairs of integers) in
the collection that is an input parameter. We denote this number
by k.

For simplicity we assume that the logarithms of the num-
bers are bounded by a polynomial in k. For an algorithm to be
polynomial-time under compact encoding, it thus has to run in
time polynomial in k. Clearly, although the minimum makespan
might be computed in polynomial time, the corresponding sched-
ule cannot be output explicitly, as it would require at least n steps.
However, in our polynomial-time algorithms on compact input,
the schedule will be implicit.

3. Natural scheduling rules fail on simple digraphs

Several natural scheduling rules do not produce an optimal
schedule, even when restricted to collections of simple digraphs of
small height. An example is Hu’s algorithm [11], which solves the
problem on in-trees. It schedules first the jobs having the longest
directed path to any other job in the precedence graph. This rule is
clearly not helpful for collections of stars or collections of complete

bipartite graphs.
We provide more examples of such rules, illustrated in the
figures below. In all of them we consider m = 3 machines. In

each figure, the vertical columns indicate the time slots; hence
there can be at most three vertices per column. On the left side
of the vertical line, the schedule resulting from the proposed rule
is shown, whereas an optimal schedule is shown on the right side.

In the first three examples we consider collections of stars.
Every presented rule describes a priority for the center vertex of
each star, which dictates an ordering of the stars. The schedule is
obtained by processing each center as soon as possible, in the order
given by the rule. Fig. 1 illustrates each of the rules: highest ratio
between out-degree and in-degree, largest out-degree, and largest
in-degree. Figs. 2 and 3, respectively, illustrate the rules: highest
ratio between in-degree and out-degree, and smallest in-degree
with ties broken by largest out-degree.

In the last two examples we consider collections of complete
bipartite graphs. Since all in-leaves of a complete bipartite graph
have to be processed before any out-leaf of that graph, we draw
each graph as a star by inserting a smaller half-filled center vertex
representing a job of processing time 0 that separates the in-leaves
from the out-leaves. We apply the same idea of processing the
centers as soon as possible, subject to the order of the graphs
dictated by the following rules. Fig. 4: highest ratio between
out-leaves and in-leaves, largest number of in-leaves, and largest
number of out-leaves. Fig. 5: lowest ratio between out-leaves and
in-leaves, smallest number of in-leaves, and smallest number of
out-leaves.

Download English Version:

https://daneshyari.com/en/article/1142171

Download Persian Version:

https://daneshyari.com/article/1142171

Daneshyari.com

https://daneshyari.com/en/article/1142171
https://daneshyari.com/article/1142171
https://daneshyari.com

