
Operations Research Letters 42 (2014) 186–189

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Using diversification, communication and parallelism to solve
mixed-integer linear programs
R. Carvajal a,b,∗, S. Ahmed a, G. Nemhauser a, K. Furman c, V. Goel d, Y. Shao d

a Industrial and Systems Engineering, Georgia Institute of Technology, United States
b School of Business, Universidad Adolfo Ibáñez, Chile
c ExxonMobil Research and Engineering, United States
d ExxonMobil Upstream Research Company, United States

a r t i c l e i n f o

Article history:
Received 7 May 2013
Received in revised form
13 November 2013
Accepted 31 December 2013
Available online 14 February 2014

Keywords:
Integer programming
Branch-and-bound
Diversification
Communication
Parallelism
Performance variability

a b s t r a c t

Performance variability of modern mixed-integer programming solvers and possible ways of exploiting
this phenomenon present an interesting opportunity in the development of algorithms to solve mixed-
integer linear programs (MILPs).Wepropose a frameworkusingmultiple branch-and-bound trees to solve
MILPswhile allowing them to share information in a parallel execution.We present computational results
on instances from MIPLIB 2010 illustrating the benefits of this framework.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mixed-integer linear programming (MILP) problems are com-
monly solved using a linear programming-based branch-and-cut
scheme. The scheme proceeds by partitioning the space of so-
lutions in the form of a search tree obtained by fixing variable
bounds (branching). Then it uses lower bounds from linear pro-
gramming (LP) relaxations, typically tightened by the addition of
cutting planes, and upper bounds, from feasible solutions, to prune
parts of the search space. Modern implementations of this generic
scheme involve a multitude of options, e.g., how to select a parti-
tion to further subdivide (node selection), how to select a variable
to branch on (variable selection), what kinds of cutting planes to
add and how often to add them, what types of heuristics to use
and howoften to use themand so on. It iswell known that different
choices of these options can have very significant effect on the per-
formance of the branch-and-cut scheme [1]. In addition to these al-
gorithmic options, it has beennoted in [2] that the performance of a
specific implementation on a particular problem instance can vary

∗ Corresponding author at: School of Business, Universidad Adolfo Ibáñez, Chile.
E-mail address: rocarvaj@gatech.edu (R. Carvajal).

very significantly with less understood factors, such as the compu-
tational environment, random seeds used in the inner workings of
the implementation, and permutation of the rows and columns of
the instance. To alleviate inconsistency of computational results
due to performance variability issues, [8] suggest a performance
variability score to present computational results on the MIPLIB
2010 instances. For more details regarding performance variabil-
ity, the reader is referred to the recent survey article [10].

One way of exploiting performance variability in solving an in-
stance is processing it with multiple different settings (called con-
figurations throughout the rest of this paper) of an MILP solver
and then selecting the best of these executions. In [11] commercial
solvers such as CPLEX andGurobi are executedmultiple timeswith
different random seeds (5 at the time of this writing) to solve a set
of MILP benchmark instances and the best result is reported. The
results show improvements in time to optimality relative to the
default settings of these solvers (around 40% for CPLEX and 30% for
Gurobi). In [4], a bet-and-run approach is proposed, where multi-
ple configurations of an MILP solver obtained by different kinds of
randomization of the root LP are run simultaneously until a given
number of nodes is explored. Then a bet is placed on the ‘‘best’’
configuration, which is then run to optimality. The authors report
a reduction in the number of branch-and-bound nodes. A similar
approach is reported in the context of implementing branch and

http://dx.doi.org/10.1016/j.orl.2013.12.012
0167-6377/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2013.12.012
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2013.12.012&domain=pdf
mailto:rocarvaj@gatech.edu
http://dx.doi.org/10.1016/j.orl.2013.12.012


R. Carvajal et al. / Operations Research Letters 42 (2014) 186–189 187

bound in a parallel architecture [12,9,13]. A well-known issue here
is the ‘‘ramp-up’’ phase of the algorithm inwhichnotmanybranch-
and-bound nodes have been generated, making it hard to balance
work among available multiple processors and potentially leaving
many idle resources. In [12] and then in [9,13] a technique (that is
called racing ramp-up in [9]) is proposed, which involves running
different configurations of anMILP solver in parallel independently
across the available processors until a given criterion is met. Then
the best-generated branch-and-bound tree is used to continue the
algorithmby sending its nodes to the different processors. All other
generated trees are discarded. According to [9], this approach has
not proved to be very effective. In [3], the effect of variability in col-
lecting good cutting planes and solutions within the CPLEX MILP
solver is investigated. The approach starts by running a sampling
phase that executes the default root-node cut loop starting from
different optimal bases of the initial LP (through the use of the ran-
dom seed parameter available in CPLEX) multiple times, while col-
lecting cutting planes and feasible solutions. After this, a final run
is done where the instance is solved by using the collected pools of
cuts and solutions. They report considerable reduction in the vari-
ability of the percentage root node LP gap closed on a set of ‘‘unsta-
ble’’ instances from MIPLIB 2010. They also note improvements in
primal solutions at the root node and reductions in the time of the
final run of the algorithm (without taking into account the sam-
pling phase).

In this paper,we study apossibleway of exploiting performance
variability by considering a diverse set of configurations of an
MILP solver and executing these in parallel while allowing them
to share information among each other. We test different types of
information to be shared and compare the performance with that
of the base solver with default settings. Our experimental results
confirm previous evidence [4] that by simply selecting the best
of multiple runs of an MILP solver with different configurations
can yield significant performance improvements. We also show
that the addition of communication yields substantial benefits in
terms of reaching good feasible solutions or good upper bounds
quickly. Although previous work (like [3,4]) has explored ideas
that can be potentially used in a parallel setting, in most cases a
serial implementation is used. However our approach that allows
for communication on-the-fly and parallelism is a core part of our
implementation.

In Section 2, we describe our diversification–communication
framework. Section 3 describes the parallel implementation.
Experimental results are given in Section 4 and conclusions in
Section 5.

2. The diversification–communication framework

Our scheme consists of multiple configurations of an MILP
solver running in parallel on the same instances. We call the set
of different configurations a diversification. The configurations can
share communication in different modes:

• No communication. Configurations run independently until one
of them proves optimality or all of them run out of time.

• Light communication. Configurations run independently, but the
best lower and upper bound obtained among all configurations
are recorded. Thus optimality can be proved earlier by having
one configuration providing the optimal solution and another
the best dual bound.

• Communication. Configurations share some information with
the other configurations, which then use the information in
their own searches.

In the communication mode, the configurations can share one
or more of the following types of information:

• Feasible solutions. Configurations send feasible solutions they
find to the other configurations. Each configuration that re-
ceives a solution adds it as a heuristic solution to its search.

• LP bounds. Configurations send their best LP bound to other con-
figurations. Each configuration uses the value to add an objec-
tive value cut of the form cT x ≥ z̄, where z̄ is a global lower
bound for the problem.

• Cuts at the root node. The pool of cutting planes generated dur-
ing the root node cut loop in each configuration is shared with
the other configurations.When a configuration receives cutting
planes from other configurations, it adds these as new rows to
the problem.More details on how this is implemented are given
in Section 3.

3. Parallel implementation and experimental framework

We implemented the diversification–communication frame-
work described in the previous section by using a master–worker
scheme, in which the master process is only in charge of man-
aging communication among the workers, which are in turn
running the different configurations of the MILP solver in par-
allel. Our code is written in C++ using OpenMPI [5] to imple-
ment the communication and CPLEX 12.4 [6] as the base MILP
solver. All communications with the worker processes are done
through the use of CPLEX callback functions implemented us-
ing its C callable library. All computations are done using the
boyle cluster in the ISyE High Performance Computing Facility
(http://www.isye.gatech.edu/computers/hpc/). The machines in
this cluster are identical, each with 8 Intel Xeon 2.66 GHz chips
and 8 GB RAM running Linux.

The sharing of cuts obtained at the root node by the different
solvers is implemented using a two-phase approach. In phase one,
a set of configurations with different emphases in generating cut-
ting planes execute CPLEX’s root node cut loop until it terminates
or reaches a specified time limit. In phase two, the configurations
share their corresponding cut pools and best solution found so far
(if any).

After cut sharing is completed, we have a new instance which
consists of the original problem plus the cuts just shared, added as
new rows.Note thatwehave chosen to bypass CPLEX’s cut filtering,
since our intention is to force CPLEX to use the cuts and capture
their effect on performance. Then, a different diversification is
used, which we discuss below, and the optimization is restarted.
Due to technical limitations of CPLEX, cuts cannot be collected in a
form that corresponds to the original formulation unless we turn
off the presolve feature in CPLEX.

Our experiments are performed over the Benchmark class of
problems fromMIPLIB 2010 [8].We only use the feasible instances,
which leaves 84 instances in total. All runs are given a time limit
of 3 h of wall-clock time. When sharing cuts at the root node, a
1 h time limit is given to the root node cut loop and 3 h for the
re-optimization phase.

One of our goals is to compare the performance of the proposed
diversification–communication framework with default CPLEX
using the same number of threads as processors that run in
parallel. We limit our experiments to using 8 processes because
of machine availability. Note that since our implementation uses
a master–worker scheme, actually 9 processes are used, but one
of them is just in charge of the communication. Also, due to the
use of user callback functions in CPLEX in our implementation,
dummy callbacks were used when CPLEX was executed with
default settings. We think this is necessary in order to get a fair
comparison, since the only presence of a user callback function
changes the underlying behavior of CPLEX. In order to test the
effect of communication, we fixed a diversification consisting of
8 configurations listed below. Each uses one thread, obtained by
changing oneparameter of CPLEX12.4 at a time. The corresponding
CPLEX parameter considered is indicated in parentheses.

http://www.isye.gatech.edu/computers/hpc/


Download English Version:

https://daneshyari.com/en/article/1142174

Download Persian Version:

https://daneshyari.com/article/1142174

Daneshyari.com

https://daneshyari.com/en/article/1142174
https://daneshyari.com/article/1142174
https://daneshyari.com

