
Operations Research Letters 44 (2016) 165–169

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Coupled bisection for root ordering
Stephen N. Pallone ∗, Peter I. Frazier, Shane G. Henderson
School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853, United States

a r t i c l e i n f o

Article history:
Received 19 February 2015
Received in revised form
27 October 2015
Accepted 23 December 2015
Available online 31 December 2015

Keywords:
Bisection
Dynamic programming
Lagrangian relaxation
Index policies

a b s t r a c t

We consider the problem of solving multiple ‘‘coupled’’ root-finding problems at once, in that we can
evaluate every function at the same point simultaneously. Using a dynamic programming formulation, we
show that a sequential bisection algorithm is a close-to-optimalmethod for finding a rankingwith respect
to the zeros of these functions. We show the ranking can be found in linear time, prove an asymptotic
approximation guarantee of 1.44, and conjecture that this policy is near-optimal.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consider a function f : S × [0, 1) → R, where S is finite but
large, and for every s, f (s, ·) is monotonic with unique root. If we
are interested in finding the zero x∗(s) of f (s, ·) for all elements
s ∈ S, then for each f (s, ·) we could employ the classical bisection
method. However, if one evaluation of f for some x yields values
of f (s, x) for all s ∈ S, then we could potentially solve multiple
bisection problems at once. Furthermore, if we are only interested
in the ordering of elements s with respect to their zeros x∗(s),
calculating the zeros to precision is computationally unnecessary.

The coupled root-ordering setting has applications in comput-
ing Gittins [3] and Whittle [12] index policies, respectively used
in multi-arm bandit and restless bandit problems. We are then
interested in ordering states in the state space according to their
Gittins or Whittle indices, which correspond to the zero of a par-
ticular function. The ordering of the states is all that is required to
implement the index policy. Methods for evaluating these indices
to precision are prevalent in the literature (see [6] for a discus-
sion on computational methods). In practical applications where
Gittins indices are computed, the problems typically have addi-
tional structure, such as sparse transition kernels or the ability to
compute indices in an online fashion. The most competitive algo-
rithms for computing Gittins index policies exploit these kinds of
structure. Coupled bisection does not take advantage of any addi-
tional structure, and therefore is not competitive with these algo-
rithms. However, its generality allows it to compute index policies

∗ Corresponding author.
E-mail addresses: snp32@cornell.edu (S.N. Pallone), pf98@cornell.edu

(P.I. Frazier), sgh9@cornell.edu (S.G. Henderson).

for a wide range of problems that be formulated as instances of
coupled root-ordering [5,13,2,4].

Coupled bisection can also be used in solving coupled root-
finding problems, because it can bemore computationally efficient
to sort the roots before further refining their respective locations.
One such example is the estimation of phase diagrams during the
evaluation of piezoelectric materials [10]. Given a pair of chem-
ical compounds A and B, one must determine for each tempera-
ture s in some set a critical threshold x∗(s) such that mixtures of A
and B with a fraction x > x∗(s) of A form one crystal phase, while
mixtures with x < x∗(s) form another phase. Here, f (s, x) is the
crystal phase at temperature s and mixing coefficient x, and can be
observed through a physical experiment. Synthesizing a particular
linear combination x is time consuming, but allows easy observa-
tion of f (s, x) for all temperatures s. This is a coupled root-finding
problem.

Coupled root-finding also arises in remote sensing, when
finding the boundary of a forest or other geographical feature from
an airborne laser scanner [1]. Here, an aircraft chooses a latitude x
at which to fly and observes the presence or absence of the feature,
f (s, x) ∈ {0, 1}, for all longitudes s in the flight path. The boundary
at longitude s is given by the root x∗(s).

Naively, we could discretize the interval [0, 1) and calculate f
with respect to all discretized values of x. Although this is easy
to program and understand, the computational investment can be
massive and unnecessary. We develop a coupled bisectionmethod
that can sort these elements in a more efficient fashion.

We solve this problem by sequentially evaluating f at different
values of x. When we evaluate f at some value x, we find f (s, x)
for every element s, and we can deduce for every element whether
x∗(s) ≥ x or x∗(s) < x. At every iteration, we know of a subinterval

http://dx.doi.org/10.1016/j.orl.2015.12.015
0167-6377/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2015.12.015
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2015.12.015&domain=pdf
mailto:snp32@cornell.edu
mailto:pf98@cornell.edu
mailto:sgh9@cornell.edu
http://dx.doi.org/10.1016/j.orl.2015.12.015

166 S.N. Pallone et al. / Operations Research Letters 44 (2016) 165–169

that contains x∗(s). These subintervals form a disjoint partition of
[0, 1). By evaluating f for a different value of x at each iteration,
we refine the previous partition, choosing one subinterval to split
into two. This continues until for every element each subinterval
contains at most one root.

In this process, we must find a way to sequentially select the
next value of x at which we evaluate f . One might conjecture by
analogy that the optimal decision is to choose some subinterval
and select the midpoint of that interval to be the next value of x.
This policy is not optimal, but we show it can sort the elements
by their associated zeros in O (|S|) iterations in expectation, and
calculate the asymptotic constant to be bounded above by 1.44.We
also provide a lower bound of |S| − 1 for the minimum number
of iterations for any policy, implying an approximation guarantee
of 1.44. Moreover, we give computational evidence suggesting our
proposed policy is even closer to optimal than the 1.44 guarantee
suggests.

2. Problem specification

We first model the underlying decision process. Suppose X =
[x(i), x(i+1)) : i = 0, . . . ,m

denotes a partition of the interval

[x(0), x(m+1)). We assume x(i) < x(i+1) for all i. Let N =

(n(0), n(1), . . . , n(m)) represent the numbers of roots that lie in the
corresponding subintervals in X . Together, the pair (X,N) deter-
mine the computational state. Suppose at decision epoch j, our cur-
rent computational state is (Xj,Nj). We choose a refined partition

Xj+1 =

x(0)
j , x(1)

j

, . . . ,

x(ℓ)
j , x̄j+1

,

x̄j+1, x

(ℓ+1)
j

, . . . ,

x(j)
j , x(j+1)

j

,

where ℓ ∈ {0, . . . , j} and x̄j+1 ∈ (x(ℓ)
j , x(ℓ+1)

j). Accordingly, letX(Xj)
be the set containing all refined partitions of Xj containing j + 1
subintervals. We then evaluate f at x̄j+1. For all elements s ∈ S we
observe f (s, x̄j+1), and therefore we can determine whether x∗(s)
is less than or greater than x̄j+1. At this point, the n(ℓ)

j roots in the

original subinterval

x(ℓ)
j , x(ℓ+1)

j

are split among the two newly-

created subintervals. Hence, we have

Nj+1 =

n(0)
j , . . . , n(ℓ−1)

j , N̄j+1, n(ℓ)
j − N̄j+1, n(ℓ+1)

j , . . . , n(j)
j

,

where n(ℓ)
j+1 = N̄j+1 and n(ℓ+1)

j+1 = n(ℓ)
j − N̄j+1. All other components

in Nj remain the same because we learn nothing new about roots
in the other subintervals.

A priori, we assign a prior distribution to the location of x∗(s)
for every element s ∈ S. For simplicity, we assume that for
every s, independent of all else, x∗(s) ∼ Unif[0, 1). Otherwise,
as long as under the prior distribution the root locations are
i.i.d. and absolutely continuous with respect to Lebesgue mea-
sure, we can use an inverse mapping to appropriately stretch
the real line to yield the above case. Therefore, a priori, N̄j+1 ∼

Binomial

n(ℓ)
j , (x̄j+1 − x(ℓ)

j)/(x(ℓ+1)
j − x(ℓ)

j)

. Since we would like

to find an ordering for x∗(·), we stop evaluating f when every
subinterval in the partition X contains at most one root, i.e., we
stop when n(i)

≤ 1 for all i ∈ {0, . . . , |N| − 1}. Define the stopping
time τ = inf{j ∈ N : N (i)

j ≤ 1 ∀i = 0, 1, . . . , j}.
We would like to model this multiple root-finding problem as a

dynamic program that finds the Bayes-optimal policy minimizing
the expected number of evaluations of f (·, x) needed to find an
ordering of all elements s ∈ S with respect to x∗. We define the
value function for computational effort under policy π

Wπ (X,N) = Eπ [τ | X0 = X, N0 = N] , (1)

where π is a policy that maps computational states (X,N) to
partitions X̄ ∈ X(X). The value function Wπ counts the expected
number of iterations needed to sort the elements s ∈ S with
respect to x∗ under policy π . We define the value function
W (X,N) = infπ∈Π Wπ (X,N), where Π denotes the set of all
policies π .

3. Recursion

Using the original definition of the value function in (1), we can
derive a recursion for the computational dynamic program. For a
computational state pair (X,N) that do not satisfy the stopping
conditions, we have that

Wπ (X,N) = 1 + Eπ [Wπ (X1,N1) | (X0,N0) = (X,N)] ,

where X1 = π(X0,N0) indicates the next refinement of the
partition, and N1 is the subsequent spread of elements among
subintervals.

By the principle of optimality, we can iteratively take the best
partition X1 over each step, which gives us a recursion for W ,
the value function under the optimal policy. Because the process
((Xj,Nj) : j ≥ 0) is time-homogeneous, we can drop the subscripts
and denote X̄ as the refinement of partition X , and N̄ as the result-
ing distribution of elements among subintervals. Thus, we have

W (X,N) = 1 + min
X̄∈X(X)

E

W (X̄, N̄)

 X0 = X, N0 = N

. (2)

3.1. Decomposition and interval invariance

We can greatly simplify this recursion by decomposing it by the
different subintervals.

Theorem 1. Under the optimal policy, the value function W has the
following two properties.

• Decomposition: W (X,N) =
|N|−1

i=0 W

[x(i), x(i+1))

, n(i)

• Interval invariance:W

[x(i), x(i+1))

, n(i)

= W

{[0, 1)} , n(i)

.

Proof. We will first prove the decomposition result. For any
initial computational state (X,N), consider the following policy.
For each subinterval [x(i), x(i+1)), take an optimal policy for the
computational state

[x(i), x(i+1))

, n(i)

, and once we find a

partition of the subinterval satisfying the stopping conditions,
we do the same for another subinterval. Therefore, it must be
W (X,N) ≤

|N|−1
i=0 W

[x(i), x(i+1))

, n(i)

.

Now we will prove the opposite inequality. First, note that the
order we choose to further partition the subintervals is irrelevant,
since we only seek to minimize the number of evaluations
required, and each evaluation provides refinement only within its
subinterval. Without loss of generality, consider only policies that
evaluate the function with value within the leftmost subinterval
that still does not satisfy the stopping conditions. Suppose this
interval is [x(i), x(i+1)) and contains the zeros of n(i) elements.
Before we are allowed to move to the next subinterval, we must
find a partition of [x(i), x(i+1)) that satisfies the stopping conditions.
By definition, this takes a minimum of W

[x(i), x(i+1))

, n(i)

steps. Since we only evaluate the function at one value at a time,
we perform one evaluation on exactly one subinterval at each step.
Therefore, repeating the same logic for every subinterval tells us
W (X,N) ≥

|N|−1
i=0 W

[x(i), x(i+1))

, n(i)

.

We will now prove the second claim of the theorem using
a pathwise argument. Suppose we have initial computational
state (X0,N0) =

[a, b), n(i)

. Define the operator T ((X,N)) =

((b − a)X + a,N). If we define

X̃j, Ñj

= T−1

Xj,Nj

for all time

Download English Version:

https://daneshyari.com/en/article/1142208

Download Persian Version:

https://daneshyari.com/article/1142208

Daneshyari.com

https://daneshyari.com/en/article/1142208
https://daneshyari.com/article/1142208
https://daneshyari.com

