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a b s t r a c t

It is well-known that the intersection of the matching polytope with a cardinality constraint is integral
(Schrijver, 2003) [8]. In this note, we prove a similar result for the polytope corresponding to the
transportation problem with market choice (TPMC) (introduced in Damcı-Kurt et al. (2015)) when the
demands are in the set {1, 2}. This result generalizes the result regarding the matching polytope. The
result in this note implies that some special classes of minimum weight perfect matching problem with
a cardinality constraint on a subset of edges can be solved in polynomial time.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The transportation problem with market choice (TPMC),
introduced in the paper [4], is a transportation problem in which
suppliers with limited capacities have a choice of which demands
(markets) to satisfy. If a market is selected, then its demand
must be satisfied fully through shipments from the suppliers. If
a market is rejected, then the corresponding potential revenue is
lost. The objective is to minimize the total cost of shipping and lost
revenues. See [5,7,9] for approximation algorithms and heuristics
for several other supply chain planning and logistics problemswith
market choice.

Formally, we are given a set of supply and demand nodes that
form a bipartite graph G = (V1 ∪ V2, E). The nodes in set V1
represent the supply nodes, where for i ∈ V1, si ∈ N represents the
capacity of supplier i. The nodes in set V2 represent the potential
markets, where for j ∈ V2, dj ∈ N represents the demand ofmarket
j. The edges between supply and demand nodes have weights that
represent shipping costs we, where e ∈ E. For each j ∈ V2, rj
is the revenue lost if the market j is rejected. Let x{i,j} be the
amount of demand of market j satisfied by supplier i for {i, j} ∈ E,
and let zj be an indicator variable taking a value 1 if market j
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is rejected and 0 otherwise. A mixed-integer programming (MIP)
formulation of the problem is given where the objective is to
minimize the transportation costs and the lost revenues due to
unchosen markets:

min
x∈R|E|

+
, z∈{0,1}|V2 |


e∈E

wexe +


j∈V2

rjzj (1)

s.t.


i:{i,j}∈E

x{i,j} = dj(1 − zj) ∀j ∈ V2 (2)
j:{i,j}∈E

x{i,j} ≤ si ∀i ∈ V1. (3)

We refer to the formulation (1)–(3) as TPMC. The first set of
constraints (2) ensures that if market j ∈ V2 is selected (i.e., zj =

0), then its demand must be fully satisfied. The second set of
constraints (3) model the supply restrictions.

TPMC is strongly NP-complete in general [4]. Aardal and Le
Bodic [1] give polynomial-time reductions from this problem to
the capacitated facility location problem [6], thereby establishing
approximation algorithmswith constant factors for themetric case
and a logarithmic factor for the general case.

When dj ∈ {1, 2} for each demand node j ∈ V2, TPMC is
polynomially solvable [4]. We call this special class of the problem,
the simple TPMC problem in the rest of this note.

Observation 1 (Simple TPMC Generalizes Matching on General
Graphs). The matching problem can be seen as a special case of the
simple TPMC problem. Let G = (V , E) be a graph with n vertices and
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m edges. We construct a bipartite graph Ĝ = (V̂ 1
∪ V̂ 2, Ê) as follows:

V̂ 1 is a set of n vertices corresponding to the n vertices in G, and V̂ 2

corresponds to the set of edges of G, i.e., V̂ 2 contains m vertices. We
use {i, j} to refer to the vertex in V̂ 2 corresponding to the edge {i, j} in
E. The set of edges in Ê are of the form {i, {i, j}} and {j, {i, j}} for every
i, j ∈ V such that {i, j} ∈ E. Nowwe can construct (the feasible region
of) an instance of TPMC with respect to Ĝ = (V̂ 1

∪ V̂ 2, Ê) as follows:

T = {(x, z) ∈ R2m
+

× Rm
| x{i,e} + x{j,e}

+ 2ze = 2 ∀e = {i, j} ∈ V̂ 2 (4)
j:{i,j}∈E

x{i,{i,j}} ≤ 1 ∀i ∈ V̂ 1 (5)

ze ∈ {0, 1} ∀e ∈ V̂ 2
}. (6)

Clearly there is a bijection between the set of matchings in G and
the set of solutions in T . Moreover, let

H := {(x, z, y) ∈ R2m
× Rm

× Rm
| (x, z) ∈ T , y = e − z},

where e is the all ones vector in Rm. Then we have that the convex hull
of the incidence vectors of all the matchings in G = (V , E) is precisely
the set projy(H).

Note that the instances of the form of (4)–(6) are special cases of
simple TPMC instances, since in these instances all si’s are restricted to
be exactly 1 and all dj’s are restricted to be exactly 2.

2. Main result

An important and natural constraint that one may add to the
TPMC problem is that of a service level, that is the number of
rejected markets is restricted to be at most k. This restriction can
be modeled using a cardinality constraint,


j∈V2

zj ≤ k, appended
to (1)–(3). We call the resulting problem cardinality-constrained
TPMC (CCTPMC). If we are able to solve CCTPMC in polynomial-
time, then we can solve TPMC in polynomial time by solving
CCTPMC for all k ∈ {0, . . . , |V2|}. Since TPMC is NP-hard, CCTPMC
is NP-hard in general.

In this note, we examine the effect of appending a cardinality
constraint to the simple TPMC problem.

Theorem 1. Given an instance of TPMC with V2, the set of demand
nodes, and E, the set of edges, let X ⊆ R|E|

+ × {0, 1}|V2| be the set of
feasible solutions of the simple TPMC. Let k ∈ Z+ and k ≤ |V2|. Let
Xk

:= conv(X ∩{(x, z) ∈ R|E|

+ ×{0, 1}|V2| |


j∈V2
zj ≤ k}). If dj ≤ 2

for all j ∈ V2, then Xk
= conv(X) ∩ {(x, z) ∈ R|E|

+ × [0, 1]|V2| |
j∈V2

zj ≤ k}.

Our proof of Theorem 1 is presented in Section 3. We note that
the result of Theorem 1 holds even when Xk is defined as conv(X ∩

{(x, z) ∈ R|E|

+ × {0, 1}|V2| |


j∈V2
zj ≥ k}) or conv(X ∩ {(x, z) ∈

R|E|

+ × {0, 1}|V2| |


j∈V2
zj = k}).

In Lemma 1 in Section 3, we give a linear description of conv(X)
bymeans of a projection of amatching polytope overwhichwe can
optimize in polynomial time. Therefore, by invoking the ellipsoid
algorithm and the use of Theorem 1 we obtain the following
corollary.

Corollary 1. Cardinality constrained simple TPMC is polynomially
solvable.

We note that, as a consequence of Theorem 1 (but also inherent
in our proof), a special class of minimum weight perfect matching
problem with a cardinality constraint on a subset of edges can
be solved in polynomial time: Simple TPMC can be reduced to a

minimum weight perfect matching problem on a general (non-
bipartite) graph G′

= (V ′, E ′) [4]. (Note that Observation 1, in
contrast, provides a reduction from matching to a special case of
simple TPMC.) Therefore, it is possible to reduce CCTPMC with
dj ≤ 2 for all j ∈ V2 to a minimum weight perfect matching problem
with a cardinality constraint on a subset of edges. Hence, Corollary 1
implies that a special class of minimum weight perfect matching
problems with a cardinality constraint on a subset of edges can be
solved in polynomial time.

Note that the intersection of the perfectmatching polytopewith
a cardinality constraint on a strict subset of edges is not always
integral.

Example 1. Consider the cycle C4 of length 4 with edge set E =

{{1, 2}, {2, 3}, {3, 4}, {1, 4}}, and the cardinality constraint x12 +

x34 = 1. The only perfect matchings are {{1, 2}, {3, 4}} and
{{1, 4}, {2, 3}} for which the cardinality constraint has activity 2
and 0, respectively. Thus the perfect matching polytope is a line
which is intersected by the hyperplane defined by the cardinality
constraint in the (fractional) center.

To the best of our knowledge, the complexity status of
minimum weight perfect matching problem on a general graph
with a cardinality constraint on a subset of edges is open. This
can be seen by observing that if one can solve minimum weight
perfect matching problemwith a cardinality constraint on a subset
of edges in polynomial time, then one can solve the exact perfect
matching problem, in polynomial time. Given a weighted graph,
the exact perfect matching problem is to find a perfect matching that
has a total weight equal to a given number. The complexity status
of exact perfect matching is open; see discussion in the last section
in [2].

Finally we ask the natural question: Does the statement of
Theorem 1 hold when dj ≤ 2 does not hold for every j? The next
example illustrates that the statement does not hold in such case.

Example 2. Consider an instance of TPMC where G = (V1 ∪ V2, E)
is a bipartite graph with

V1 = {i1, i2, i3, i4, i5, i6}, V2 = {j1, j2, j3, j4},
E = {{i1, j1}, {i2, j2}, {i3, j3}, {i4, j1}, {i4, j4}, {i5, j2},

{i5, j4}, {i6, j3}, {i6, j4}},
si = 1, i ∈ V1, dj1 = dj2 = dj3 = 2, dj4 = 3.

For k = 2 it can be verified that we obtain a non-integer extreme
point of conv(X) ∩ {(x, z) ∈ Rp

+ × [0, 1]n |
n

j=1 zj ≤ k}, given by
x{i1,j1} = x{i2,j2} = x{i3,j3} = x{i4,j1} = x{i4,j4} = x{i5,j2} = x{i5,j4} =

x{i6,j3} = x{i6,j4} = z1 = z2 = z3 = z4 =
1
2 . To see this, consider

the face defined by the supply constraints of nodes {i4, i5, i6} and
observe that this face has precisely two solutions having 1 and 3
markets, respectively.

Therefore, Xk
≠ conv(X)∩{(x, z) ∈ Rp

+×[0, 1]n |
n

j=1 zj ≤ k}
in this example.

3. Proof of Theorem 1

To prove Theorem 1 we use an improved reduction to a
minimum weight matching problem (compared to the reduction
in [4]) and then use the well-known adjacency properties of the
vertices of the perfect matching polytope. Since the integrality
result does not hold for the perfect matching polytope on a general
graph with a cardinality constraint on any subset of edges, as
illustrated in Example 1, we need to refine the adjacency criterion.

We begin with some notation. For a graph G = (V , E) with
node set V and edge set E, and a node v ∈ V , we denote by
δ(v) := δG(v) := {e ∈ E | v ∈ e} the set of edges incident to
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