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a b s t r a c t

We analyze monotonicity of base stock levels in multi-product inventory-production systems where
arriving demand triggers production of a new unit. In a paper from 1996, Rubio and Wein used open
Jackson networks to describe such integrated models. They conjectured that the base stock level should
increase with the utilization in the production system. We present a basic analytical proof of the general
presumption for single- and multi-product systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For a manufacturing system which produces products of
different types on a make-to-stock basis, we consider a queueing
network model to determine an optimal base stock policy. A base
stock policy prescribes a target total inventory position for each
product to balance backorder and inventory holding costs. In the
system, products are stored in a finished good (FG) inventory
to serve exogenous demand. If there are finished goods at stock
when demand arrives, it is satisfied immediately, otherwise it is
backordered (negative FG). In both cases, an order for producing a
new unit of the required product is placed instantaneously, which
is immediately counted as work-in-process (WIP). Consequently,
the sum of FG and WIP inventory is maintained at a fixed level
for each product in this CONWIP-like system. Related models are
base stock systems with multiple production stages each holding
its individual buffer stock (see [2,8]).

Our starting point is the paper of Rubio and Wein [10] whose
base stock model consists of a multi-product inventory and a
replenishment network of the Jacksonian type.

We focus on monotonicity behavior of optimal base stock
policies within the parameters of the network and discuss the
following important monotonicity property for optimally setting
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the target base stock level: Whenever the demand intensity
for a product increases and/or somewhere in the network the
production capacity decreases, the optimal base stock level
increases (we use ‘‘increasing’’ for ‘‘non decreasing’’, and similarly
‘‘decreasing’’).

Although this property seems to be intuitive and natural, it
is not easy to prove. In fact, Rubio and Wein provided a proof
only for the case of a single-product inventory-production system
where all stations have the same utilization (in their terminology:
a balanced network). For the single-product case in an unbalanced
network, they conjectured that such monotonicity should hold
as well, relying on numerical experiments (see [10], p. 263). The
main objective of the present paper is to prove the monotonicity
property even for a more general system, i.e., the manufacturing
system does not have to be balanced nor reduced to the single-
product case.

2. Manufacturing queueing system with backordering

We consider a multi-product manufacturing systemwith prod-
ucts u, u = 1, . . . ,U . In the system, we distinguish between the
FG and WIP inventory which contain the finished and unfinished
goods, respectively. Unsatisfied demand is captured by the backo-
rder level for each type of good.

If an exogenous demand for a specific product arrives, the
corresponding WIP inventory increases in the same amount as
the FG inventory for this product decreases. This ensures that the
demanded product is eventually reproduced. On the other hand,
finished products are transferred from themanufacturing network
to the FG inventory, i.e., are converted fromWIP to FG units.
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The WIP processes (Nu(t) : t ≥ 0) for u = 1, . . . ,U , are
determined by the manufacturing system, which will be described
in terms of stochastic networks of generalized Jacksonian type in
Section 3.

Let Zu(t) denote the FG inventory level of product u, where
negative levels count backorderedunits.Without loss of generality,
the initial level is set as the base stock level zu, u = 1, . . . ,U .

Demand reduces the FG inventory whereas finished produced
units increment it. Therefore, the base stock level is at all times
equal to the total inventory position: Nu(t) + Zu(t) = zu. The WIP
levels Nu(t) can grow arbitrarily high because it also includes the
backordered products whereas Zu(t) is bounded from above by zu.

We are interested in the long run overall costs per time unit.
Constructing aMarkovian system processwhich relies on standard
queueing network models, these costs are computed via the
stationary expected costs by exploiting the ergodic theorem of
the Markovian joint queue length processes in standard Jackson
networks.

LetNu denote a randomvariable distributed according to the to-
tal number of WIP of type u under the stationary WIP distribution,
which will be given explicitly below.

It turns out that the main decision variables are Nu, u =

1, . . . ,U (see [10], p. 261). Control variables are stock sizes zu ≥ 0,
for product type u = 1, . . . ,U . Rubio and Wein showed that
the cost minimizing base stock levels z∗

u , u = 1, . . . ,U , can be
expressed in terms of the WIP of product u and the respective
inventory holding cost hu and backorder cost bu per unit of product
u and time unit only. These are the smallest integers z∗

u ≥ 0, such
that for the stationary WIP in the replenishment network holds

P(Nu ≤ z∗

u ) ≥
bu

bu + hu
, u = 1, . . . ,U . (1)

3. Multi-class Jackson network with exponential service times

To describe the behavior of the WIP in the replenishment
system, we use a standard multi-class Jackson network in which
the WIP inventory Nu is the total population size of product u.
We adapt the notation of [4, chap. 5] and consider a multi-class
Jackson network with J stations, numbered by j = 1, . . . , J . We
distinguish in the network customer classes (≡ product types) u,
u = 1, . . . ,U . Set nju the number of class u customers at node
j (≡ WIP of product u at j), the total population size at node j
as nj = nj1 + · · · + njU , and define nj =


nj1, . . . , njU


and

n =

n1, . . . , nJ


, the joint class occupation vector. Arrivals of

class u at node j (triggered by external demand for product u) from
outside of the network follow a Poisson process with rate λju. rju,ku
is the probability that class u customers departing from node j join
node k, and rju,0 is the probability that a class u customer leaves
the system after finishing his service at node j (and enters the FG
inventory); it holds

J
k=1 rju,ku + rju,0 = 1, u = 1, . . . ,U .

Note that since demand of product u triggers a class u arrival at
the replenishment network (≡ initiates production of a new unit
of product u) and leaves as an output of product u (≡ is shifted
to the FG inventory after complete production), customers in the
network do not change their class which would be possible in the
general setting of [4, chap. 5].

αju, the total arrival rate of class u at node j, is obtained as the
solution (assumed to be unique) of the so called traffic equations

αju = λju +

J
k=1

αkurku,ju, j = 1, . . . , J; u = 1, . . . ,U .

At node j all customers require an amount of service which
is exponentially distributed with rate µj. The server at node j

provides service at rate Φj(nj), which is non-decreasing in nj and
Φj(nj) > 0 if nj ≥ 1. This results in a versatile construction of
service regimes. For example, if the network consists of first-come-
first-served (FCFS) multi-server queues with sj ≥ 1 servers, we
can write Φj(nj) = min


nj, sj


. We define the class u utilization of

node j by ρju = αju/µj.
The stationary distribution π of the multi-class Jackson

network for the joint class occupation process with values
n =


n1, . . . , nJ


is with normalization constants Bj =

∞

n=0


(
U

u=1 ρju)
n/
n

ℓ=1 Φj(ℓ)


< ∞ (see [4], p. 127)

π (n) =

J
j=1

πj

nj


(2)

with πj

nj


= B−1
j

nj!

nj1! . . . njU !

nj
ℓ=1

Φj(ℓ)
−1

U
u=1

ρju
nju .

Remark 1. With the standard independence assumptions for
inter-arrival times, service time requests and the Markov chain
property of the customer traffic process, it can be seen that a pro-
cess, which records the detailed sequence of the products present
(waiting or in service) for all stations of the multi-class Jacksonian
replenishment network, is a Markov process [4, chap. 5]. The de-
partures from the network immediately turn into FG, while the ar-
rivals at the network indicate arrival of external demand at the FG
inventory. This makes our system accessible to a Markov process
modeling. The joint class occupation process (which does not count
for positions in the queue) with values n =


n1, . . . , nJ


is in gen-

eral notMarkovian. However, it suffices as state description for the
relevant quantities for our investigations.

Example 1 (Deterministic Replenishment Schedule). Our model en-
compasses the important case where each class (product) has its
dedicated fixed sequence of service stations to visit in the replen-
ishment procedure: Each customer (product) class follows its own
route inside the network. Such networks with class dependent
fixed routing are called Kelly networks [7], which exhibit station-
ary distributionswith product form structure as introduced before.

Remark 2. So far, we have only considered networks inwhich cus-
tomers have exponential service requirements. For arbitrary ser-
vice requirements, we refer to BCMP networks (see [4, chap. 6]),
where the service requirement of a customer u at station j may
have an arbitrary distribution, depending on class and node. De-
note by Sju a random variable distributed as class u customers’ ser-
vice request at node j with mean E(Sju) = µ−1

ju . In this situation,
we need to abandon the FCFS-property and employ the so called
symmetric service disciplines (see [4, chap. 6, p. 150]).

In the context of our replenishment manufacturing system, we
could think of a server network with Φj(nj) increasing in (nj),
where all arriving customers (products) have the same priority
and the server’s effort is equally shared among all the customers
present at the same node (processor-sharing regime). The ser-
vice completion rate is Φj(nj) ·

nju
nj

µju for customers of class u at
node j, u = 1, . . . ,U . The utilizations in the network are ρju =
αju
µju

, u = 1, . . . ,U, j = 1, . . . , J . The stationary distribution of this
BCMP network with single servers under processor-sharing withU

u=1 ρju < 1 and unique solutions of the traffic equations αju,
j = 1, . . . , J, u = 1, . . . ,U , has the identical formula displayed in
(2) (see [4], Theorems 6.1 and 6.2). But the cautious reader should
recall the difference of ρju = αju/µj and ρju = αju/µju.
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