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a b s t r a c t

We show that a large class of discrete choice models which contain the Markov chain model introduced
by Blanchet, Gallego, and Goyal (2013) belong to the class of discrete choice models based on random
utility.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Discrete choice models (DCM) have been widely used to model
the choices individuals make when they are offered a set of
alternatives (or options). DCM have played an important role in
several research areas such as psychology, economics, marketing,
and, more recently, in the field of revenue management.

In the standard discrete choicemodel setting, there is a universe
of alternatives or product types C = {1, . . . ,N}. Individuals are
then exposed to offer sets S ⊆ C, and theymust select one element
from S or nothing at all. Each subset S offered to individuals is
known as the choice set. In this setting, a discrete choice model
is characterized by a function P : C × 2C

→ R such that for
all i ∈ C ∪ {0} and all S ⊆ C, P (i, S) denotes the probability of
selecting element i given that the offer set is S. The function P is
often called the system of choice probabilities that characterizes a
specific discrete choice model.

The practical advantage of using a particular discrete choice
model depends on two characteristics. The first one is the degree
upon which it is able to model the choice behaviour of individuals
in different settings. The better a discrete choice model can
approximate complex choice behaviour, the richer is said to be.
The second one is by the degrees of freedom it has. A model with
a large number of degrees of freedom would typically require a
large historical data-set in order to find the right values of its
parameters and it is more prone to over-fitting problems. These
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two dimensions are usually in conflict, i.e., discrete choice models
that can capture complex choice behaviours generally have a
higher number of degrees of freedom. Finding the ‘‘right’’ discrete
choice model for a given application involves searching a model
with a proper trade-off between the two mentioned dimensions
(see, e.g., [11]).

One of the most simple and also most used models in discrete
choice is the Multinomial Logit Model (MNL) [15]. Because
of its simplicity, the MNL fails to predict complex behaviour
and that has motivated the creation of richer models such as
the Probit Model [1], the Nested Logit Model [14], the Mixed
Multinomial Logit [17] and distance-based models [18] which
contain the Mallows model [16] as a special case. All these
models belong to an important and large class of discrete choice
models based on random utility known as Random Utility Models
(RUMs) which are defined for completeness in Section 2. Recently,
Webb [22] showed that a predominant class of discrete choice
models to understand neural decision making, known as Bounded
Accumulation models [20], are as well a subclass of RUMs.

There exist nevertheless classes of discrete choice models that
fall outside the class of RUMs. We briefly mention the most
relevant ones. Echenique et al. [8] have considered a discrete
choice model in which agents select an alternative following a
perception priority order. The authors showed that their model,
called Perception-Adjusted Luce Model (PALM), is able to explain
recent experiments carried out with consumers [7] that cannot
be explained by any random utility model. Another choice model,
initially proposed to understand sales diversity undermonopolistic
competition [21,6], is the Representative Agent Model (RAM). In a
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RAM, the choice among the alternatives is decided by a specifically
constructed agent that is a representative of the whole population.
Hofbauer and Sandholm [12] proved that when the number of
alternatives is at least 4, there is always a RAM which is not a
RUM. Natarajan et al. [19] have presented a strict generalization
of the RUM, known as Semi-parametric Choice Model (SCM), and
showed how it can be used to make predictions from a real-life
transportation data set that outperform several RUM models. The
question of what is the relationship between the classes RAM and
SCM was answered only recently by Feng et al. [10]. The authors
provide a detailed classification of several discrete choice models
and proposed a new class which they called welfare-based choice
models. Their main contribution is a proof that the RAM, the SCM,
and their new proposed class are essentially the same. (It follows
from their result that welfare-based choice models include RUMs
as a proper subset.)

Recently, another class of discrete choice models have been
proposed by Blanchet et al. [3]. In their model, individual
preferences are built using a Markov chain in which states are
the alternatives or products. The model prescribes how would an
individual decide which alternative to select when she is offered
a subset of alternatives S. Specifically, with probability pi an
individual has alternative i as her most favourite. If the alternative
i is not available, with probability pij the individual who preferred
i walks to select the alternative j. If again, the alternative j is
not available, with probability pjk she walks to alternative k, etc.
Since it is assumed that for all i ∈ C,


j∈C\{i} pij < 1, this

walking process will end either when the individual walks to the
no-choice option (in which case selects nothing) or when she
arrives to an alternative from the set S (and selects it). Blanchet
et al. [3] showed how this Markov chain model is an appealing
model in the area of revenue management, which consists of a
set of methodologies firm use to decide on the availability and/or
the price of their products and/or services. First, they showed
that the model generalizes the widely used MNL, and second,
the assortment problem under this new model can be solved
efficiently. The assortment problemunder theMarkov chainmodel
was recently studied in more depth by Feldman and Topaloglu [9]
and Désir et al. [5] where the authors analysed different extensions
such as when there is limited inventory, or when there is an
upper bound on the size of the assortments that can be shown to
individuals.

1.1. Our results

Blanchet et al. [3], Feldman and Topaloglu [9] and Désir et al. [5]
left open a fundamental question about the Markov chain model:
how rich is this class? More specifically, how does this class
compares to RUMs? In their analysis of discrete choice models,
Feng et al. [10] argued that the Markov chain model is not related
to other discrete choice models they studied such as the RUMs,
SCM and RAM, and they omitted the Markov model from their
analysis and classification. (To the best of our knowledge, the
Markov chain model is the only discrete choice model studied in
the literature whose connection with the RUM remained open.) In
this paper, we prove that everyMarkov chainmodel belongs to the
class of RUMs. Thus, despite their appealing features,Markov chain
models are not able to replicate every choice behaviour that can be
modelled by other discrete choice models such as the PALM and
the RAM (or equivalently, the SCM or the welfare-based models).
On the positive side, it follows from our result that the three
performance guarantees for the simple and well-known revenue-
ordered assortment heuristic for the assortment problem that hold
for all RUMs [2] are valid as well for every Markov chain model.

A natural way to enrich the class of Markov models is by
providingmore ‘memory’ to the individual along her walk over the

alternatives. Suppose now that the probability that an individual
who is currently in alternative i would walk to the alternative j
depends not only on i and j, but also on the alternative that was
visited right before alternative i. In otherwords, the individual now
considers the previous two alternatives (instead of only the last
one) in order to probabilistically walk to the following alternative.
Is it possible that thismodel extension becomes richer than RUMs?
If not, what about the class of models where individuals remember
the last three, or the last k alternatives with k ∈ N? We answer
this question negatively. Specifically, we introduce, in Section 3,
a new class of discrete choice models called Discrete choice Models
Based on RandomWalkswhere thewalking probabilities depend on
thewhole sequence of the alternatives previously visited. We then
prove that for every such a model, there always exists a random
utility model that is equivalent to it. In other words, regardless
on how much memory the individuals are endowed with about
the different alternatives that they walked through (this included
arbitrarily large memory as sequences’s length are unbounded),
the model will fail to explain behaviours that cannot be explained
by RUMs.

2. Preliminaries

In a Random Utility Model, each alternative i (including the
no-choice option) has associated a random real variable (utility)
ui. These N + 1 variables are jointly distributed over RN+1, with
a certain probability measure P with P(Ui = Uj) = 0 for all
i, j ∈ C ∪ {0}, i ≠ j. Then, the probability of selecting alternative
x ∈ S ∪ {0} with S ⊆ {1, 2 . . . ,N} is equal to the probability that
alternative x has the highest utility among those in S ∪ {0}. The
system of choice probabilities is then characterized as follows:

P (x, S) = P(Ux = max{Uc : c ∈ (S ∪ {0})}).

An alternative way to think about random utility models is
using what is known as stochastic preference. Given k ∈ N,
let Sk denote the symmetric group which is the set of all the
permutations of the elements in {0, 1, 2, . . . , k − 1}. A stochastic
preference model is described by a probability distribution Pr over
the set SN+1 (i.e. a probability distribution over all the rankings of
the elements in C ∪ {0}). Given two elements i, j ∈ C ∪ {0} and
a permutation ≼∈ SN+1, we say that i ≼ j whenever i appears
before j in ≼ or when i = j. A system of choice probabilities P
characterizes a stochastic preference Pr if

P (x, S) = Pr(≼∈ SN+1 : x ≼ y, for all y ∈ (S ∪ {0})) (1)

for all S ⊆ C and x ∈ S ∪ {0}.
Thus P (x, S) represents the probability of selecting a ranking

from the probability space Pr in which element x appears before
the no-choice option 0, and any other element in S.

The equivalence of stochastic preference models and random
utility models is expressed in the following theorem.

Theorem 1. A system of choice probabilities P characterizes a
stochastic preference model if and only if it characterizes a RUM.

For a proof of this result see, e.g., [4,13].

3. Discrete choice models based on random walks

Let Ω denote the set of all finite sequences of elements in
C (including the empty sequence s = ∅). A discrete choice
model based on random walks can be defined based on a series
of probability distribution functions Pα : C ∪ {0} → [0, 1], one
for each α ∈ Ω . We begin by describing how a random walk is
constructed given the PDF’s Pα and a choice set S.
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