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a b s t r a c t

This paper provides a polynomial-time algorithm for economic lot-sizing problems with convex costs
in the production and inventory quantities. The resulting algorithm is based on a primal–dual approach
that takes advantage of the problem’s special structure. This approach improves upon existing results
in the literature, which are either pseudo-polynomial or focus on special cases. We apply the approach
to a production planning problem with price-dependent supply, leading to an improved bound on the
algorithm’s running time for a special case.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The model. We consider the classic discrete-time, finite-horizon
economic lot-sizing problemwith nondecreasing and convex costs
in the production quantities and inventory levels in each period.
This problem considers a set of consecutive demand periods and
seeks to meet deterministic demand for a product in each period
t = 1, 2, . . . , T without lost sales or backlogging, at a minimum
total cost over the planning horizon of length T . The total cost
incurred over the horizon consists of those costs associated with
producing the product in any period as well as the cost of holding
inventory of the product between periods. At the beginning of each
period, the production quantity in the period is added to remaining
inventory from the prior periodwith zero lead time, and the sumof
these two quantities must be at least as great as the demand in the
period (with the difference comprising the amount of inventory
that will remain at the end of the period). Because all demands and
costs are assumed deterministic, all production decisions may be
made in advance of the first planning period, and the model can in
principle accommodate any finite, deterministic production plan-
ning lead time.We assume throughout that no capacity limit exists
on the production quantity or the inventory held in any period.

Of particular importance in approaching the solution of prob-
lems in this class are the nature and structure of the production
and inventory holding costs. Because a wide range of practical
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settings exist with economies of scale in production, the cost of
production in a period is often modeled as a nondecreasing and
concave function of the production quantity, while conventional
approaches typically treat the cost of holding inventory as a lin-
ear function of the inventory amount at the end of the period. This
leads to a total cost function that may be expressed as the sum of
concave functions of the production quantities, implying a concave
total cost function. Conversely, production processes and inven-
tory costs with diseconomies of scale may often be modeled using
convex functions of the production quantities and inventory levels.
This paper considers this latter class of problemswith nondecreas-
ing convex cost functions.
New results. Our main contribution lies in providing a polynomial-
time algorithm for the lot-sizing problem we have described with
general nondecreasing convex production and holding cost func-
tions. We discuss two ways to implement our approach. The first
is an iterative numerical approach that runs in O(T 2 max{log T ,
log S logM/ϵ}) time. Here T denotes the number of time pe-
riods and S provides an upper bound on the number of non-
differentiable points of the cost to supply demand in period s using
production in period t for any (t, s) pair with 1 ≤ t ≤ s ≤ T . The
value of M is an upper bound on the marginal production cost in
any period, and ϵ denotes a stopping criterion for a bisection search
routine in the proposed algorithm. As we will see in Section 2,
for the case in which all of the cost functions are piecewise lin-
ear and convex, this iterative approach requires O(T 2 max{log T ,
(log S)2}) time. The second implementation we provide requires
repeated solution of a systemof equationswith atmost T+1 equa-
tions and T + 1 variables. Assuming this system of equations can
be solved in O(φ(T )) time, where φ(T ) is a polynomial function of
T , this solution approach requires O(T max{T log T , φ(T )}) time.
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When all costs are differentiable and quadratic, then O(φ(T )) =

O(T ), and this expression becomes O(T 2 log T ). To the best of our
knowledge, the literature does not contain a special-purpose algo-
rithm for this general problem class that runs in polynomial time
in the worst case. Although the resulting problem is a convex opti-
mization problem, the application of a general purpose nonlinear
programming solver to problemswith special structuremay result
in unnecessarily long solution times, and the associated running
time would be weakly polynomial, regardless of the structure of
the cost functions. The algorithmwe provide is based on a primal–
dual solution approach derived from analyzing the special struc-
ture of the problem’s generalized Karush Kuhn–Tucker (KKT)
conditions, which are necessary and sufficient for optimality. We
specialize the resulting algorithm for application to a production
planning context involving price-dependent supply components,
where component supply is linearly increasing in price. The re-
sulting problem is a special case of the general lot-sizing problem
with nondecreasing and convex production costs, where the pro-
duction costs take a quadratic form and the associated complexity
is O(T 2 log T ).
Directly-related results. Veinott [11] considered a single-stage, dy-
namic lot-sizing problem in which production and inventory
costs are piecewise-linear and convex. He designed a parametric-
programming-based procedure inwhich the solution for a problem
with a fixed parameter set is built upon the solution of another
problem with a similar parameter set. Veinott [11] assumed all
parameters were integer valued, and his procedure resulted in a
pseudo-polynomial solution algorithm. The time complexity the
algorithm is O(TD), where D =

T
t=1 dt denotes the sum of all

demands over the planning horizon. Florian et al. [5] referred to
Veinott’s procedure as the most attractive approach to solve lot
sizing problems with convex production and inventory costs and
without fixed setup costs, even though the problem is demon-
strated to be no harder than linear programming, which is poly-
nomially solvable.

The work by Kian et al. [7] is also closely related to ours, as they
analyzed a single-stage, uncapacitated economic lot-sizing prob-
lem with fixed setup costs and variable costs in each period that
are convex in the production quantity (taking the form of a polyno-
mial function of the production quantity). They derived several key
optimality conditions for this problem class, as well as a dynamic
programming solution algorithm that is exponential in the length
of the time horizon. They presented an exact solution algorithm for
the lot-sizing problem with zero setup costs and production costs
taking the formof polynomial convex functions, and stated that the
worst-case time complexity of such an algorithm would be O(T 2).
In Section 3, we will explain why this bound applies to the num-
ber of subplans that must be considered, and not to the problem’s
overall worst-case complexity.
Related work. The problem we consider falls into the class of
single-stage, dynamic lot-sizing problems, which has been studied
by many researchers, starting with the seminal work of Wagner
and Whitin [12], who first considered the problem with concave
production costs. Brahimi et al. [1] provided an extensive review
of uncapacitated and capacitated versions of the single-stage,
dynamic lot-sizing problem. The uncapacitated version of the
classical single-stage, dynamic lot-sizing problem with concave
costs is polynomially solvable, whereas the general capacitated
version of the problem with concave costs is N P -Hard, although
the uniform-capacity version can be solved in polynomial time via
dynamic programming (see Florian and Klein [4]). Many studies
have considered variations of the single-stage, dynamic lot-sizing
problem (see e.g. Van Hoesel and Wagelmans [10], and Van den
Heuvel andWagelmans [9]). In these studies, all costs are assumed
to be concave in the production and inventory levels.

The literature on lot-sizing problems containing convex pro-
duction costs is reasonably sparse, with a few notable excep-
tions. Erenguc and Aksoy [2] considered a single-item, capaci-
tated dynamic lot-sizing problem with fixed production setup
costs and linear inventory costs, while variable production costs
were piecewise-linear and convex in the production quantity in
a period. They used a branch-and-bound algorithm for this prob-
lem, which contains neither a convex nor concave objective func-
tion. ShawandWagelmans [8] developed a pseudo-polynomial dy-
namic program to solve a capacitated single-item lot-sizing prob-
lemwith piecewise-linear production costs. Their algorithm can be
utilized to solve problems with piecewise-linear and convex pro-
duction costs, although it does not require any special structure
for the piecewise-linear cost function. Feng et al. [3] developed
an O(T log T ) algorithm for the single-item lot-sizing problem
with constant capacity, convex inventory costs, andnon-increasing
fixed order costs.
Paper organization. The rest of this paper is organized as follows.
Section 2 provides a general model formulation, description
of the Karush Kuhn–Tucker (KKT) conditions for the problem,
and development of a polynomial-time algorithm, along with a
comparison of this approach to the one provided by Veinott in [11].
Section 3 discusses the production planning problem with price-
dependent supply, and illustrates the application of the model to
a practical special case that falls within the general problem class
we consider. Section 4 contains brief concluding remarks.

2. Problem formulation and solution method

The lot-sizing problem requires meeting a set of demands dt ,
for t = 1, . . . , T without shortages at a minimum total production
and inventory holding cost over the horizon of length T . Letting xt
denote the production quantity in period t , it will be convenient
and useful to keep track of the amount produced in period t in
order to meet demand in period τ , xtτ , where xt =

T
τ=t xtτ for

t = 1, . . . , T .We assume that the cost to produce xt units in period
t is a nondecreasing convex function ft(xt). In addition, ht(it) de-
notes a nondecreasing and convex inventory holding cost function,
which depends on the inventory at the end of period t , denoted by
it . The inventory remaining at the end of period t can be equiv-
alently written as it =

t
τ=1

T
i=τ xτ i −

t
τ=1 dτ ; thus, we can

alternatively write ht as a function of the production variables us-
ing the expressionht

t
τ=1

T
i=τ xτ i


, wherewehave suppressed

the dependence of ht on cumulative demand up to period t for no-
tational convenience. We assume that each of the functions ft and
ht is everywhere locally Lipschitz continuous. The convex cost lot-
sizing problem may then be formulated as follows.

P : Minimize
T

t=1


ft


T

τ=t

xtτ


+ ht


t

τ=1

T
i=τ

xτ i


(1)

Subject to :

τ
t=1

xtτ = dτ , τ = 1, . . . , T , (2)

xtτ ≥ 0, τ = 1, . . . , T , and t ≤ τ . (3)
As the sum of convex functions, the objective function of

problem P is convex; this combined with the linear constraint
set implies that the generalized KKT conditions are necessary and
sufficient for optimality (see Hiriart-Urruty [6]).
Generalized KKT conditions. To characterize the generalized KKT
conditions, let ∂ ft(X t) denote the generalized gradient of ft at X t ,
where X t

= (xtt , xtt+1, . . . , xtT ). If ft is differentiable at X t , then
∂ ft(X t) consists of a singleton equal to the partial derivative with
respect to any element of X t at X t ; otherwise, ∂ ft(X t) corresponds
to the set of subgradients at X t . Similarly, let X̄ t

= (X1, X2, . . . ,
X t), and let ∂ht(X̄ t) denote the generalized gradient of ht at X̄ t .
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