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a b s t r a c t

We study discrete price changes due to the size of a trade in the market microstructure
model. We use a mixture of Poisson distributions to model the discrete changes in stock
price. The parameters are estimated using the Expectation–Maximization (EM) algorithm
with mixing probabilities which depend on order size. Consistency and asymptotic
normality of a sequence of estimators are proved, and asymptotic confidence intervals for
functions of the parameters are derived.We test themethodwith simulated and real data.
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1. Introduction

Most traditional price models in hedging, pricing and optimization in financial mathematics such as the Black–Scholes
model are macro-movement models in the sense that these models are focused on the improvement of prices in a relatively
long time scale such as weekly and monthly closing prices. As the market becomes more computerized and trading
frequencies get much higher, modeling of micro-movement data becomes more important. Many traders nowadays are
day-traders, who make several trading decisions in a few hours, differently from traditional hedgers and option traders.

Micro-movements of the stock price are recorded hourly or even tick-by-tick. Thosemicro-movements are quite different
from the macro-movements, since we can no longer ignore microstructure noises. Discussion on market microstructure
noises can be found in Zeng (2003).

A tick-by-tick, or trade-by-trade stock price moves discretely, and there are many sources of noise affecting the
movements such as clustering, roundoff, and news arrivals. In this study, we focus on the effect of the order size. Traditional
asset pricing models ignoredmarket frictions such as transaction cost and liquidity cost. This means that one can buy or sell
infinite amount of shares without changing the price. Certainly this is not the case we observe in a real market. Intuitively,
it is expected that the price goes up as the size of a buy order goes up, and it goes down as the size of the sale order goes up,
although that phenomenon is noised by other factors related to the market.

The effect of the order size on the price change has been studied in Bank and Baum (2004), Çetin, Jarrow, and Protter
(2004), Çetin and Rogers (2007) and Gill, Lee, and Song (2007). Recently, related studies using the limit order book dynamics
have been done by Biais andWeill (2009), Cont, Stoikov, and Talreja (2010) and Rosu (2009). In this study, we suggest a new
method to explain the tick by tick price change using a Poisson mixture model.

It is important to consider separately increases and decreases in the stock price when analyzing changes of the stock
price. Therefore, we investigate how the stock price changes with respect to the order size as a mixture of ‘stock price
increments’ and ‘stock price decrements’. In this situation where there are heterogeneous subpopulations within the
population, separate models of the subpopulations as well as a model for the relative frequency with which observations
are observed from each subpopulation are needed to appropriately model the entire population. The idea of using mixture
models in such cases goes back to a classic paper by Karl Pearson in 1894 which used a mixture of two normal distributions
(McLachlan & Peel, 2000). Since then, mixture models have been applied to many different disciplines including astronomy,
biology, genetics, medicine, economics, engineering, marketing, and many more. Some interesting applications of mixture
models are provided by Blekas, Likas, Galatsanos, and Lagaris (2005), Brijs et al. (2004), Caudill, Gropper, and Hartarska
(2009), Feng et al. (2008), Gerdtham and Trivedi (2001), Greenspan, Goldberger, and Eshet (2001), Hernandez and Phillips
(2006), Park and Lord (2009), Rocha, Soldevilla, and Burtenshaw (2007), Su et al. (2011) and Zhai, Velivelli, and Yu (2004).

With the stock market regulations, a ‘tick-size’ is maintained to provide a minimum size that a stock price can change,
and ‘tick-size’ has been mandated by electronic exchanges as the ‘smallest currency unit’. The ‘tick-size’ governs an indirect
discreteness to the changes in stock price where any given time a stock price can be changed only as a multiple of the
established ‘tick-size’. This allows the stock prices to cluster among a smaller set of values. This discreteness and clustering
add an advantage towards lowering the cost of negotiation and limiting the information exchange between buyers and
sellers (Harris, 1991).

The proposed model provides a new way to investigate the stock price movements as a mixture model of count data.
For a set of counts, the most natural distribution to use is the Poisson distribution. In the regression setting, classical linear
models can be extended to generalized linearmodels (GLMs)which allow the response variable to follow a distribution from
an exponential family (such as the Poisson distribution). A link function is used to link themean of the response variable to a
linear function of the predictors. In the GLM setting, parameters are often estimated by the method of maximum likelihood.
For a GLM with a canonical link function, the likelihood function is convex so the maximum likelihood estimate (MLE) is
unique when it exists (for example, see Madsen & Thyregod, 2011 and the references therein), and the Newton–Raphson is
an effective method for obtaining the MLE.

However, in models with missing data or hidden parameters, direct calculation of MLEs can be very difficult. In these
situations, the Expectation–Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977) is a widely used method to
compute MLEs. Advantages of the EM algorithm in mixture models which accommodate the likelihood approach are
discussed in Berlinet and Roland (2012), Xu and Jordan (1996) and Yao (2013). Parameter estimation of Poisson mixtures is
faster than in Gaussian mixtures due to the reduced number of parameters as stated by Su et al. (2011). Stock movements
based on tick-size result in a set of integers as stock prices move up and down. This results in the use of different parametric
forms of Poisson distributions in the mixture model. Nevertheless, according to Xu and Jordan (1996), the EM algorithm
works faster when the mixtures are clearly separated.

The rest of the paper is organized as follows. The mixture model is proposed in Section 2, and the EM algorithm is
used to compute maximum likelihood estimates for the model parameters described. Results proving the consistency and
asymptotic normality of the estimators are presented in Section 3, and confidence intervals with the correct asymptotic size
are derived based on the asymptotic normality. Proofs of the theoretical results are given in the appendices. In Section 4,
simulation studies are presented to illustrate properties of the estimation procedures, and a real example with Federal
Express (FDX) tick data is also presented.
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