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a b s t r a c t

In linear regression, amultivariate sample-selection scheme often applies to the dependent
variable, which results in missing observations on the variable. This induces the sample-
selection bias, i.e. a standard regression analysis using only the selected cases leads to
biased results. To solve the bias problem, in this paper, we propose a class of multivariate
selection regression models by extending classic Heckmanmodel to allow for multivariate
sample-selection scheme and robustness against departures from normality. Necessary
theories for building a formal bias correction procedure, based upon the proposed model,
are obtained, and an efficient estimation method for the model is provided. Simulation
results and a real data example are presented to demonstrate the performance of the
estimation method and practical usefulness of the multivariate sample-selection models.

© 2016 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many authorsworkingwith regression analysis have considered the problem of potentially biased estimates arising from
the selection process that generated the sample (e.g., Azzalini & Capitanio, 1999; Heckman, 1974; Hevia &Arrazola, 2009 and
Marchenko & Genton, 2012). This problem naturally occurs when observations of the dependent variable of the regression
model are missing not at random (MNAR; Rubin, 1976) owing to a sample-selection rule such as incidental truncation,
hidden truncation, or censoring (e.g., Greene, 2008). That is, observations of the dependent variable, y∗

i ∈ R, in the regression
model can be observed as yi = y∗

i only when a corresponding latent variable u∗

i ∈ R belongs to an interval C ⊂ R of its
support. For the case of an unbounded interval C ≡ (0,∞), Heckman (1974) introduced the classic sample-selectionmodel
as follows.

y∗

i = x⊤

i β + ϵi, i = 1, . . . ,N, (1)
with a single-selection equation

u∗

i = w⊤

i γ + ηi, i = 1, . . . ,N, (2)
such that the observations are missing on y∗

i for all cases in which u∗

i ≤ 0. Here the vectors β ∈ Rq and γ ∈ Rr are unknown
parameters, xi ∈ Rq,wi ∈ Rr , and the joint distribution of the error terms of ϵi and ηi is assumed to follow

ϵi
ηi


∼ N2


0
0


,


σ 2 ρσ
ρσ 1


. (3)
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Under the ‘‘Heckmanmodel’’ (also known as ‘‘Type 2 tobit model’’ considered by Amemiya, 1985), our interest is to estimate
β by using observed values of the explanatory variables for all the sample, and N1 of the N observations for y∗

i satisfied by
the univariate selection (or single-selection) rule. Since we only observe N1 observations yi = y∗

i for which si = 1 with
si = I(u∗

i ∈ C), the regression function for the Heckman model reduces to

E[yi|xi,wi] = x⊤

i β + ρσλ(w⊤

i γ), i = 1, . . . ,N1 < N, (4)

where λ(·) = φ(·)/Φ(·) and φ(·) and Φ(·) denote the standard normal probability density and distribution function,
respectively (e.g., Catsiapis & Robinson, 1982). Here, the result is a biased estimator of β if we perform the OLS regression
for (1) on the selected sample, ignoring the extra term ρσλ(w⊤

i γ) in (4) for ρ ≠ 0. As a result, various bias correction
procedures for consistent estimation of β in the regression model (1), as well as its applications, have been dealt with
extensively in econometrics literature. See, Griliches, Hall, and Hausman (1977) and Heckman (1979) for the estimation,
Das, Newey, and Vella (2003) and Newey (1999) for some robust estimation methods, and Hevia and Arrazola (2008) and
Hoffmann and Kassouf (2005) for some empirical applications. With regard to the variants of Heckman model, Marchenko
andGenton (2012) used the heavy-tailed bivariate t-distribution for the errormodel (3) to relax the assumption of normality,
and Catsiapis and Robinson (1982) considered a bias correction procedure for the regression model involving multiple
independent selection rules. The model also has been generalized to the case of bivariate selection rules (i.e. two correlated
selection rules) and applied to the empirical analysis of different phenomena. Mohanty (2001) demonstrated the bivariate
selection model in analyzing male–female wage differences; Serumaga-Zake and Naudé (2003) used a bivariate selection
scheme to estimate private returns to education in South Africa; and Hevia and Arrazola (2009) considered the marginal
effects in the bivariate selection model on wages in Spain.

In practical situations, however, the sample selection process often comprisesmultiple selection rules. A typical example
is the customer segmentation analysis where customers are grouped by multiple selection rules for segmenting the level
of consumer attitude, motivations, patterns of usage, and preferences (Jiang & Tuzhilin, 2006; Marcus, 1998). The analysis
has been considered as one of the standard techniques used by marketers of insurance agencies, credit card companies,
manufacturers and so on. As seen in Section 5, its popularity comes from the fact that segmentedmodels usually outperform
aggregated models of customer behavior (Besanko, Dube, & Gupta, 2000). In the segmented model, the observed yi’s may
be regarded as outcome of a p-variate selection scheme in (2) with p bounded intervals C∗

j ≡ (aj, bj), such that we only
observe yi = y∗

i for si = 1 and si = I(u∗

ij ∈ C∗

j , j = 1, . . . , p) in the sample-selection model (1) with a non-normal error
distribution in (3). Unfortunately, even for the case of p = 1, all the bias correction procedures, i.e. the Heckman model and
its variants, no longer apply to the casewhere the sample-selection rule is defined by a bounded interval C∗ (i.e. C∗

1 ), because
the extra term in the regression function (4) takes a different form. In particular, the first step of the two-step estimation
method by Heckman (1979) cannot be applicable to the case of the bounded interval C∗, because the first step estimates γ
in (4) by using the probit model which fits the binary response si’s defined by the open interval C . Further, surprisingly, a
sample-selection bias correction method for the model with a selection rule using C∗ has not been tackled in the literature.
These motivated us to consider the contents of this paper.

In this paper, we develop and study the properties of a class of sample-selection models that extends the classical
Heckman model to allow for p-variate selection scheme (i.e. multivariate selection model) consisting of various bounded
(C∗)/unbounded (C) intervals and robustness against departures from normality of the error distributions. We then propose
a sample-selection bias correction procedure which yields a consistent estimation of β defined in the multivariate selection
model. The rest of this paper is organized as follows. Section 2 generalizes the Heckman model to develop a class of
multivariate selection models whose robust-to-normality comes from assuming a family of elliptical distributions for
the error distribution in (3). We then study some interesting properties of a model belonging to the class such as the
conditional distribution of selected observation, yi; a hierarchical representation of the distribution of yi; moments of yi;
and exact likelihood function of the model. In Section 3, we describe some special models belonging to the class and study
their relationship with the Heckman model. Section 4 constructs a bias correction procedure which uses an extended EM
algorithm for estimating the multivariate selection models. A test procedure for testing existence of the selection bias
in the proposed model is also given. The finite-sample performance of the algorithm is examined using a limited, but
informative simulation study in Section 5. This section also gives a real data example to demonstrate the performance of the
sample-selection bias correction procedure under themultivariate selectionmodels whichwere proposed in this paper. The
paper concludes with a discussion in Section 6.

2. Multivariate selection regression model

In this section, we extend the classical Heckman regression model to a class of multivariate selection regression mod-
els (MSRM) whose selection rules are composed of various bounded or unbounded intervals. The primary interest of the
regression model is the same as in (1), but now the selection equation (2) becomes a multivariate version. In addition,
the distributional assumption of the normal error model in (3) is relaxed by using a flexible elliptically contoured error
model.
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