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a b s t r a c t

In this paper, we develop noninformative priors for the generalized half-normal distribu-
tion when scale and shape parameters are of interest, respectively. Especially, we develop
the first and second order matching priors for both parameters. For the shape parame-
ter, we reveal that the second order matching prior is a highest posterior density (HPD)
matching prior and a cumulative distribution function (CDF) matching prior. In addition, it
matches the alternative coverage probabilities up to the second order. For the scale param-
eter, we reveal that the second order matching prior is neither a HPD matching prior nor a
CDFmatching prior. Also, it does not match the alternative coverage probabilities up to the
second order. For both parameters, we present that the one-at-a-time reference prior is a
second order matching prior. However, Jeffreys’ prior is neither a first nor a second order
matching prior. Methods are illustrated with both a simulation study and a real data set.

© 2013 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Fatigue is a structural damage which occurs when a material is exposed to stress and tension fluctuations. The half-
normal and Birnbaum–Saunders distributions are commonly used to describe the lifetime process under fatigue. Especially
they may be preferred for modeling of monotone hazard rates because their shapes are negatively or positively skewed.
However, they are not proper for a reasonable parametric fit when one models non-monotone failure rates such as the
bathtub shaped and the unimodal failure rates, which are common in reliability and biological studies. Such bathtub hazard
curves have nearly flatmiddle portions and the corresponding densities have a positive anti-mode (Pescim, Clarice, Cordeiro,
Ortega, & Urbano, 2010). Recently, Díaz-García and Leiva (2005) proposed a new family of generalized Birnbaum–Saunders
distributions based on a contoured elliptical distribution, Cooray and Ananda (2008) proposed a generalized half-normal
(GHN) distribution derived from amodel for static fatigue, and Pescim et al. (2010) proposed a beta generalized half-normal
distribution which contains the half-normal and the GHN distributions. In this paper, we focus on the GHN distributions.

Let X be a random variable with a GHN distribution with the shape parameter η and the scale parameter β . Then the
probability density function of X is
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2

√
π

η

x


x
β

η

exp


−

1
2


x
β

2η


, x > 0, (1)
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where η > 0 andβ > 0. Cooray andAnanda (2008) showed that theGHNdistribution exhibitsmore exclusivemathematical
tractability and statistical attractivenesswith amore flexible and thicker left tail than the other leading lifetime distributions
such asWeibull, gamma, and lognormal distributions. In this paper Bayesianmethods are presented for theGHNdistribution.
Especially, we develop noninformative priors for the GHN distribution.

We consider two noninformative priors: thematching and reference priors. The idea of matching priors is that the cover-
age probability of a Bayesian credible interval is asymptotically equivalent to that of the frequentist confidence interval up
to a certain order (Welch & Peers, 1963). This prior was used in many papers (Datta & Ghosh, 1995a,b; Datta & Ghosh, 1996;
Datta & Mukerjee, 2004; DiCiccio & Stern, 1994; Mukerjee & Ghosh, 1997; Mukerjee & Dey, 1993; Mukerjee & Reid, 1999;
Stein, 1985; Tibshirani, 1989). Especially, Datta and Mukerjee (2004) provided a thorough and comprehensive discussion
of various probability matching criteria. On the other hand, the reference priors maximize the Kullback–Leibler divergence
between the prior and the posterior (Bernardo, 1979). Berger and Bernardo (1989, 1992) and Ghosh and Mukerjee (1992)
provided a general algorithm to derive a reference prior by splitting the parameters into several groups according to their
order of inferential importance. This approach is successful in various practical problems and the reference priors quite of-
ten satisfy the matching criterion described earlier. In this paper, we propose matching priors as well as reference priors for
the GHN distribution.

The outline of the remaining sections is as follows. In Section 2, we respectively develop the first order and second order
probability matching priors and the reference priors for the shape parameter in GHN. In Section 3, we develop the first
order and second order probability matching priors for the scale parameter. We also derive the reference priors for the
parameters. Simulation studies and real data analysis are described in Section 4. Finally conclusions and extensions are
provided in Section 5.

2. The noninformative priors for the shape parameter

2.1. The probability matching priors

For a prior π , let θ1−α
1 (π;X) denote the (1 − α)th quantile of the posterior distribution of θ1, that is,

Pπ
[θ1 ≤ θ1−α

1 (π;X)|X] = 1 − α, (2)

where θ1 is the parameter of interest and Pπ is a probability measure on posterior distribution under the prior π . Let θ =

(θ1, . . . , θt). We want to find priors π for which

Pθ[θ1 ≤ θ1−α
1 (π;X)] = 1 − α + o(n−r), (3)

for some r > 0, as n goes to infinity. Here Pθ is a frequentist’s probability measure. Priors π satisfying (3) are calledmatching
priors. If r = 1/2, then π is referred to as a first order matching prior, while if r = 1, π is referred to as a second order
matching prior.

In order to find such matching priors π , let

θ1 = η and θ2 = β exp
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Based on (4), the Fisher information matrix is given by

I(θ) =
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where γi =
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2 exp{−y}dy, i = 1, 2. From the above Fisher information matrix I, θ1 is orthogonal to θ2 in the

sense of Cox and Reid (1987). Following Tibshirani (1989), the class of first order probabilitymatching priors is characterized
by

π (1)
m (θ1, θ2) ∝ θ−1

1 d(θ2), (6)

where d(θ2) > 0 is an arbitrary function differentiable in its argument. The class of priors given in (6) can be narrowed
down to the second order probability matching priors as given in Mukerjee and Ghosh (1997). Let L ≡ L(θ), and define
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