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a b s t r a c t

This paper studies the elliptical statistical affine shape theory under certain particular con-
ditions on the evenness or oddness of the number of landmarks. In such a case, the related
distributions are polynomials, and the inference is easily performed; as an example, a land-
mark data is studied, and the performance of the polynomial density versus the usual series
density is compared.

© 2013 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Various disciplines such as image analysis, biology andmedicine, are interested in measuring, describing and comparing
the shapes of objects. It can be assumed that the objects are summarized by a finite number of points, called landmarks,
which can be used as references for carrying out matches between andwithin populations of objects. Themathematical and
statistical matching problem has been studied by several authors; see Kendall, Barden, Carne, and Le (1999) for an excellent
topological and geometrical characterization of the shape space. As a consequence of this geometrical understanding of
shape, the procrustes theory, including projective shape analysis and its relation to affine shape analysis, has been studied
profusely in applications; some works in these directions are due to Domokos and Kato (2010), Ecaberth and Thiran (2004),
Glasbey and Mardia (2001), Goodall (1991), Groisser and Tagare (2009), Horgan, Creasey, and Fenton (1992), Kent, Mardia,
and Taylor (2004), Lin and Fang (2007), Lindeberg and Garding (1997), Mai, Chang, and Hung (2011), Mardia, Goodall, and
Walder (1996), Mardia and Patrangenaru (2005), Mardia, Patrangenaru, and Sugathadasa (2005), Mokhtarian and Abbasi
(2002) and Patrangenaru and Mardia (2003), among many others.

Now, from the statistical point of view, shape analysis is concerned with methods for analyzing shapes in the presence
of randomness, when the objects can be sampled at random from the population. The statistical approach estimates the
population mean shape and the structure of the population shape variability and performs inferences on these population
quantities; some important studies and compilations of works in this field can be found in Dryden and Mardia (1998) and
Small (1996), and the references therein.
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There are two main approaches to affine shape theory: the statistical shape analysis and the affine shape analysis in
computer vision. The affine shape distribution based on a Gaussian model has been studied by Goodall and Mardia (1993)
(corrected by Caro-Lopera, Díaz-García, & González-Farías, 2009a and Díaz-García, Gutiérrez, & Ramos-Quiroga, 2003),
Berthilsson and Heyden (1999) and Leung, Burl, and Perona (1998) (the densities obtained there can be seen as particu-
lar cases of the general densities derived by Caro-Lopera et al., 2009a). On the other hand, the affine shapes in computer
vision have been studied by various, such as Heyden (1996) and Sparr (1996). Fortunately, Patrangenaru and Mardia (2003)
proposes a unified approach, proving that affine shapes in statistical shape analysis are equivalent to affine shapes in com-
puter vision.

The core of the statistical or mathematical problems resides in the fact that some information about the figure must be
filtered out, according to the phenomena under consideration, by removing some kind of noise through translation, scale,
rotation, reflection and/or uniform shear, in order to obtain the shape of the object. Strictly speaking, Goodall and Mardia
(1993) defined the affine shape distributions as the marginal distributions modulo affine transformations; then the ad-
dressed unified definition of affine shape is based on the following definition.

Definition 1. Two figures X : N ×K and X1 : N ×K have the same configuration, or affine shape, if X1 = XE+1Ne′, for some
translation e : K × 1 and a nonsingular E : K × K .

From Ecaberth and Thiran (2004) the nonsingular matrix E can be seen as the product of elementary matrices, say E =

E1 · · · Em, corresponding to some m elementary geometric operations, including rotations, non-uniform scalings and/or
shearings. In our case, E = F1/2H, involving elementary geometric operations of rotations (via the orthogonal matrix H),
and uniform scaling shearing (via the positive definite matrix F1/2 > 0). For further readings in the main elements of trans-
formations and the geometry of shape, and some graphical examples, the reader is referred to Dryden and Mardia (1998)
and Ecaberth and Thiran (2004).

Now, let L be an N − 1 × N Helmert1sub-matrix and consider Y = (Y′

1 | Y′

2)
′, where Y1 is a K × K nonsingular matrix

and Y2 a q × K matrix, with q = N − K − 1 ≥ 1 and N > K + 1; otherwise if N ≤ K + 1, only a configuration is obtained.
Then, the N −1×K configurationmatrixU, which contains the configuration coordinates of the originalN ×K landmark

matrix X, is constructed in two steps summarized in the expression

LX = Y = UE. (1)

Note that E = Y1 is nonsingular with probability 1 and U have the form U = (I | V′)′, where V = Y2Y−1
1 . Following

Goodall and Mardia (1993), configuration coordinates can also be defined when Y1 is singular; there are two cases: if L can
be set, the identitymatrix inU is replaced by a diagonalmatrixwith the firstmdiagonal entries 1 and the remaining elements
0, where m = rank(Y1) ≤ K ; if L is fixed, as usual, U = (ui,j) is such that uj∗,k = 0 with k ≠ j and uj∗,j = 1, where 1 ≤ j ≤

K , j∗ = arg miniui,j ≠ 0. See Dryden and Mardia (1998) and Ecaberth and Thiran (2004), for some graphical examples.
In the literature it is generally assumed that X has an isotropic matrix Gaussian distribution with a mean µX,

X ∼ NN×K (µX, σ
2IN ⊗ IK ),

then, under (1), the procedure pursues the distribution of configurationmatrixU, which is termed the configuration or affine
distribution; see Goodall and Mardia (1993).

Later, Caro-Lopera et al. (2009a); Caro-Lopera, Díaz-García, and González-Farías (2009b) generalized this approach
assuming that X have a general elliptically contoured distribution, namely

X ∼ EN×K (µX, 6X ⊗ 2X, h),

and then, they obtained an expression for the configuration or affine distribution in terms of an infinite series of zonal
polynomials.

In this way the inference procedure is solved, but only from a theoretical point of view because, even when the zonal
polynomials can be computed very quickly, the problem now resides in the convergence and the truncation of the series of
zonal polynomials (Koev & Edelman, 2006, p. 845), Caro-Lopera et al. (2009a,b).

Under certain conditions, this article derives the configuration density, based on an elliptical model, as a polynomial
of low degree. Section 2 describes a revision of the main definitions, including the affine technique and the necessary
mathematical tools to obtain the main result of the paper. Then, Section 3 derives the polynomial configuration distribution
under an elliptical model and some necessary conditions on the number of landmarks. In Section 4 the inference procedure
in affine shape theory is proposed, and finally in Section 5, the main result is applied to a published data set; a numerical
performance comparison between the polynomial density versus the usual infinite series densities of zonal polynomials is
made.

1 The Helmert matrix is a k × k orthogonal matrix, with its first row of elements equal to 1/
√
k, and the remaining rows (which constitute the Helmert

sub-matrix L) orthogonal to the first row. The i-th row of the (k − 1) × k matrix L consists of Li = −1/
√
i(i + 1) repeated i times, followed by −iLi and

then k − i − 1 zeros, i = 1, . . . , k − 1.
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