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a b s t r a c t

Empirical likelihood inferences for the parameter component in an additive partially lin-
ear errors-in-variables model with longitudinal data are investigated in this article. A
corrected-attenuation block empirical likelihood procedure is used to estimate the regres-
sion coefficients, a corrected-attenuation block empirical log-likelihood ratio statistic is
suggested and its asymptotic distribution is obtained. Comparedwith themethod based on
normal approximations, our proposed method does not require any consistent estimator
for the asymptotic variance and bias. Simulation studies indicate that our proposedmethod
performs better than the method based on normal approximations in terms of relatively
higher coverage probabilities and smaller confidence regions. Furthermore, an example of
an air pollution and health data set is used to illustrate the performance of the proposed
method.

© 2013 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Longitudinal data arise frequently in biological and economic applications. In this article, we consider the following
additive partially linear model with longitudinal data:

Yij = XT
ij β +

D
d=1

fd(Zd
ij ) + εij, i = 1, . . . , n, j = 1, . . . , ni, (1.1)

where Yij is the response variable for the jth measurement of the ith subject, Xij and Zij = (Z1
ij , . . . , Z

D
ij )

T are covariates
on Rp and RD respectively, f1, f2, . . . , fD are unspecified smooth functions, β = (β1, . . . , βp)

T is a p-dimensional vector of
unknown parameters, and errors εij have mean zero conditional on Xij and Zij.

Semi-parametric additive partially linear models, which balance the interpretability of linear models and flexibility of
additive models, have been studied by many authors recently. For example, Opsomer and Ruppert (1999) proposed a root-
n consistent backfitting estimator for the parametric component of the model; Manzana and Zeromb (2005) introduced a
marginal integration estimator for the parametric component; Jiang, Zhou, Jiang, and Peng (2007) extended the generalized
likelihood ratio tests in Fan and Jiang (2005) to the model; Liang, Thurston, Ruppert, and Apanasovich (2008) investigated
additive partially linearmodels withmeasurement errors. All these articles focus on inferences of the regression coefficients
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without longitudinal data. In this article we generalize the model of Liang et al. (2008) to the case with longitudinal data.
Under the setting considered in this article, moreover, measurement errors in Xij are allowed.

The aim of the present article is to investigate the issues of estimation and confidence region construction using the
empirical likelihood approach (Owen, 1988, 1990, 1991). It is well known that the empirical likelihood method does not
need to estimate the asymptotic covariance for constructing the confidence region. Furthermore, the confidence region’s
shape and orientation are determined entirely by the data itself. Many authors had used this method to deal with different
kinds of problems. For example,Wang, Chen, and Lin (2010) considered the empirical likelihood inferences for the unknown
parameter in an additive partially linear errors-in-variables model; Zhang and Zhu (2011) investigated empirical likelihood
inferences for longitudinal data withmissing response variables and error-prone covariates in a partially linearmodel. More
recent works on other kinds of models with longitudinal data or errors-in-variables models can be found from Li, Tian, and
Xue (2008); Li and Xue (2008); Li, Zhu, Xue, and Feng (2010);Wang, Li, and Lin (2011) among others. As stated above, in this
article we consider the empirical likelihood inferences for the parameter in an additive partially linear errors-in-variables
model with longitudinal data. Due to the within-subject correlation structure, the results of Liang et al. (2008) and Wang
et al. (2010) cannot be applied directly to our model. Since subjects are independent, we take each subject as a whole and
ignore the within-subject correlation structure using the so-called working independence assumption when we compute
the estimates. As pointed out in Lin and Carroll (2001), the working independence has some model-robustness advantages
over those estimationmethodswhich have considered thewithin-subject correlation structure.Motivated by Zhang and Zhu
(2011), we propose a corrected-attenuation block empirical likelihoodmethod forβ and prove that the estimated corrected-
attenuation block empirical log-likelihood ratio statistics is asymptotically chi-squared.

The rest of this article is organized as follows. The corrected-attenuation block empirical likelihood method and the
maximum empirical likelihood estimator for β are proposed in Section 2. Conditions andmain results are given in Section 3.
Simulation studies and an application of an air pollution and health data set are conducted in Section 4. The conclusion is
conducted in Section 5. The proofs of the main results are relegated to the Appendix.

2. Empirical likelihood for the parameter component

For notational simplicity, we only consider the case ofD = 2 inmodel (1.1). To ensure identifiability of the nonparametric
functions, we assume that E(f1(Z1)) = E(f2(Z2)) = 0. We also assume that Y and X are centered, without loss of generality.
Suppose that the observed data {Yij, Z1

ij , Z
2
ij ,Wij, i = 1, . . . , n, j = 1, . . . , ni} are generated from the following model

Yij = XT
ij β + f1(Z1

ij ) + f2(Z2
ij ) + εij,

Wij = Xij + Uij,
(2.1)

where E(εij|Xij, Z1
ij , Z

2
ij ) = 0, E(Uij) = 0 and Cov(Uij) = Σuu. If β is known, the first equation of model (2.1) can be rewritten

as

Yij − XT
ij β = f1(Z1

ij ) + f2(Z2
ij ) + εij, i = 1, 2, . . . , n, j = 1, 2, . . . , ni. (2.2)

Denote

Yi = (Yi1, . . . , Yini)
T , Xi = (Xi1, . . . , Xini)

T , εi = (εi1, . . . , εini)
T ,

Z1
i = (Z1

i1, . . . , Z
1
ini)

T , Z2
i = (Z2

i1, . . . , Z
2
ini)

T ,

F 1
i = (f1(Z1

i1), . . . , f1(Z
1
ini))

T , F 2
i = (f2(Z2

i1), . . . , f2(Z
2
ini))

T .

Then, (2.2) can be written as

Yi − Xiβ = F 1
i + F 2

i + εi, i = 1, 2, . . . , n. (2.3)

Similar to Liang et al. (2008) andWang et al. (2010), let Si1,z1 , Si2,z2 denote the equivalent kernels for the local linear regres-
sion at z1 and z2, respectively. It is noted that z1 and z2 are only symbols here, and the following have the samemeaning. Then

Si1,z1 = eT1[(Z
1
i )

TΩ1
i Z1

i ]
−1(Z1

i )
TΩ1

i ,

Si2,z2 = eT1[(Z
2
i )

TΩ2
i Z2

i ]
−1(Z2

i )
TΩ2

i ,

where eT1 = (1, 0),

Ω1
i = diag


1
h1

K


Z1
i1 − z1

h1


, . . . ,

1
h1

K


Z1
ini

− z1

h1


,

Ω2
i = diag


1
h2

K


Z2
i1 − z2

h2


, . . . ,

1
h2

K


Z2
ini

− z2

h2


,
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