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a b s t r a c t

In this paper, we provide a Bayesian estimation procedure for the regression models
when the constraint of the regression function needs to be incorporated in modeling
but such a restriction is uncertain. For this purpose, we consider a family of rectangle
screenedmultivariate Gaussian prior distributions in order to reflect uncertainty about the
functional constraint, and propose the Bayesian estimation procedure of the regression
models based on two stages of a prior hierarchy of the functional constraint, referred
to as hierarchical screened Gaussian regression models (HSGRM). Specifically, we explore
theoretical properties of the proposed estimation procedure by deriving the posterior
distribution and predictive distribution of the unknown parameters under HSGRM in
analytic forms, and discuss specific applications to regression models with uncertain
functional constraints that can be explained in the context of HSGRM .

© 2013 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Functional constraints in regression models naturally arise in a wide variety of practical problems. For examples, the
linear inequality constraints for the coefficients of linear regression models are common in applied econometrics and other
quantitative sciences, and the shape constraints on the regression function such as monotonicity and convexity are often
assumed to be known a priori or plausible in theory in the nonparametric regression model. Thus, functional constraints
may be incorporated in the estimation procedure of the regression models, and these a priori functional constraints should
be reflected in prior distributions from the Bayesian point of view. In this regard, several Bayesian estimation procedures
have been considered in the literature for regression models subject to functional constraints. O’Hagan (1973) considered a
quadratic regressionwith constraint, and Chen andDeely (1996) andGeweke (1996) considered linearmodels subject to lin-
ear inequality constraints. For Bayesian nonparametric estimation of regression function subject to shape constraints, Lavine
and Mockus (1995) introduced monotone regression using Dirichlet process priors, and Bornkamp and Ickstadt (2009),
Brezger and Steiner (2008), Meyer, Hackstadt, and Hoeting (2011) and Neelon and Dunson (2004) considered shape re-
stricted regression models using splines. In addition, Chang, Chien, Hsiung, Wen, and Wu (2007) proposed shape restricted
regressions based on Bernstein polynomials. Shively, Sager, andWalker (2009) proposed two Bayesianmethods for estimat-
ingmonotone function using aWiner process prior and regression splines and extended their approaches to shape restricted
regression models that include monotonicity, convexity and other constraints in Shively, Walker, and Damien (2011). In
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addition to functional constraints, Bayesian inference on order-constrained parameters have also been studied in the litera-
ture (e.g. Dunson & Neelon, 2003, Hoijtink, Klugkist, & Boelen, 2008, Klugkist & Hoijtink, 2007, Mulder, Hoijtink, & Klugkist,
2010, Oh & Shin, 2011, and references therein).

However, it is often the case that the actual observations may violate functional constraints on account of measurement
errors or due to some other reasons, and even the data may provide strong evidence that the constraints are inappropriate
and may appear to contradict the theory. In this respect, it is expected to take uncertainty about the constraint into account
in the estimation procedure, and O’Hagan and Leonard (1976) indeed proposed a family of skew prior distributions which
reflect uncertainty about parameter constraints. They constructed a family of prior distributions with skew densities for
estimating the unknown normal mean parameter when the prior considerations suggests the positive constraint on the
normal mean parameter but it is not completely convinced. Specifically, they specified a positively skew distribution via the
two stages of a prior hierarchy for the normal mean problem instead of using the positively truncated prior distribution.
The concept of a prior hierarchy suggested by O’Hagan and Leonard (1976) can be generalized into the complex models.
For examples, based on the two stages of a prior hierarchy, Madi, Leonard, and Tsui (2000) considered estimating treatment
effects with uncertain order constraints and Kim (2011) considered estimation of simple normal models under uncertain
inequalities constraints, and Liseo and Loperfido (2003) adopted the approach of O’Hagan and Leonard (1976) to obtain a
hierarchical interpretation of two skew-normal densities in the multivariate case. The family of multivariate skew-normal
distributions obtained by Liseo and Loperfido (2003), known as hierarchical skew-normal (HSN) family can be viewed as a
special case of multivariate skewed distributions arising from selections (Arellano-Valle & Azzalini, 2006; Arellano-Valle,
Branco, & Genton, 2006; Arellano-Valle, Genton, & Loschi, 2009) or screening (Boys & Dunsmore, 1986; Kim, 2008; Kim
& Kim, 2012). In particular, the hierarchical Bayesian multivariate normal structure in Kim (2011) can be adapted to the
general Bayesian regression problems with the uncertain functional constraints, and we notice that a class of rectangle-
screenedmultivariate normal distributions in Kim and Kim (2012) would be useful for Bayesian estimation of the problems.

To the best of our knowledge, however, a Bayesian approach has not previously been investigated for regression models
with functional constraints subject to uncertainty. Accordingly, influenced by the seminal work of O’Hagan and Leonard
(1976), we provide a novel Bayesian estimation procedure for the regression models when the constraint of the regression
function needs to be incorporated in modeling but such a restriction is uncertain. For this purpose, we consider a family
of screened multivariate Gaussian prior distributions in order to reflect uncertainty about the functional constraint, and
propose the Bayesian estimation procedure of regressionmodels based on the two stages of screenedmultivariate Gaussian
prior distributions, referred to as hierarchical screened Gaussian regression models (HSGRM). The proposed method is also a
unified Bayesian estimation procedure since it is able to deal with the parametric regressionmodel aswell as nonparametric
regression model in the context of HSGRM as discussed in the paper.

The remainder of this paper is organized as follows. In Section 2, we give a basic description of the general Gaussian
regression model and provide fundamental properties of screened-Gaussian distribution that will base the estimation
procedure of HSGRM. In Section 3, we explore theoretical properties of the proposed estimation procedure by analytically
deriving the posterior distribution and predictive distribution of the unknown parameters under HSGRM. Specific Bayesian
regression models with uncertain functional constraints are illustrated in the context of HSGRM in Section 4. Finally,
concluding remarks with a discussion are made in Section 5.

2. Problem description

2.1. General regression model

Consider the following regression model for normally distributed data,

yn = ηn(x)+ ϵn, ϵn ∼ Nn(0, C), (1)

where yn = (y1, . . . , yn)⊤ is n × 1 vector of responses, yi = η(xi) + ϵi, ηn(x) = (η(x1), . . . , η(xn))⊤ is n × 1 vector of
regression function values evaluated at each of p(≥ 1)-dimensional predictor xi, i = 1, . . . , n, x = (x1, . . . , xn)⊤ is the
n × p design matrix, and ϵn = (ϵ1, . . . , ϵn)

⊤ is a n × 1 vector of random noises that has a n-variable normal distribution
with zero mean vector and covariance matrix C . For simplicity, we assume that the random noises ϵn are independent and
identically distributed, and thus C is a diagonal matrix, C = σ 2I . In the basic model structure of (1), ηn(x)may have various
functional forms of the predictors x. For example, the simple linear regression model is concerned with ηn(x) = (β0 +

β1x1, . . . , β0 +β1xn)⊤, where β0 and β1 are unknown parameters to be estimated. In the case of a nonparametric regression
model, the parametric formof the regression function is not assumed andηn(x) = (η(x1), . . . , η(xn))⊤, butηn(x) is assumed
to have specific types of functional structure. For instance, ηn(x) can be represented with a Fourier series (Lenk, 1999),
splines (Fahrmeir & Kneib, 2011), kernels (Chakraborty, Ghosh, &Mallick, 2012), Gaussian processes (Rasmussen&Williams,
2006) and others.

Bayesian analysis of the regression model in (1) begins with the specification of prior distributions for unknown
parameters ηn(x) and the noise variance σ 2. Specifically, we assign a multivariate normal prior distribution for ηn(x) and
an inverse gamma prior for σ 2, which are commonly used in normal regression models as conjugate priors,

ηn ∼ Nn(η0,Σ0) and σ 2
∼ IG(c, d), (2)



Download	English	Version:

https://daneshyari.com/en/article/1144735

Download	Persian	Version:

https://daneshyari.com/article/1144735

Daneshyari.com

https://daneshyari.com/en/article/1144735
https://daneshyari.com/article/1144735
https://daneshyari.com/

