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a b s t r a c t

This paper is motivated by the modeling of a high-dimensional dataset via group-wise
information on explanatory variables. A three-step algorithm is suggested for group-wise
semiparametric modeling: (i) screening to reduce dimensionality; (ii) clustering according
to grouped explanatory variables; (iii) sign-constraints-based estimation for coefficients
to produce meaningful interpretations. As a justification, under the setup of m-dependent
and β-mixing processes, the interplay between the estimator’s convergence rate and the
temporal dependence level is quantified and a cross-validation result about the resampling
scheme for threshold selection is also proved. This method is evaluated in finite-sample
cases through a Monte Carlo experiment, and illustrated with an analysis of the US
consumer price index.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The research described herein is motivated by the analysis of a dataset from [18], which contains 131 monthly
macro indicators covering a broad range of categories such as income, industrial production, capacity, employment and
unemployment, consumer prices, producer prices, and so forth. The time span is from January 1959 to December 2003. To
standardize the observations, logarithm transformation tomost of the series is used except those already expressed in rates.
The series are transformed to attain stationarity by taking the (1st or 2nd order) differences of the raw data series (or the
logarithm of the raw series). Then all of the observations are standardized. As the underlying model is unknown, flexible
semiparametric modeling is considered.

For this kind of dataset, people usually group variables according to some rule of thumb. For example, to model the
consumer price index (CPI: all items), people might subjectively organize the variables into groups, say as follows:

Group 1: CPI: apparel & upkeep, transportation, medical care, commodities, durables, services’;
Group 2: CPI: all items less food, all items less shelter, all items less medical care;
Group 3: ‘‘Producer Price Index (PPI)—finished goods, finished consumer goods, intermed mat. supplies & components,

crude materials’’;
Group 4: ‘‘Implicit Price Deflator of Personal Consumption Expenditures (PCE)—all items, durables, nondurables, services’’;
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and all other variables in Group 5. However, it is uncertain whether such grouping would fit the actual data structure. See
Section 5 for discussion.

In general, properly grouping the explanatory variables is of importance for modeling, which can make the model
more accurate and efficient. In effect, in regression analysis with high-dimensional data, explanatory variable grouping
is a common feature.

In the independent and identically distributed (i.i.d.) scenario with fixed number of explanatory variables, Li et al. [12]
considered a semiparametric modeling approach called the group-wise minimum average variance estimation (GMAVE).
This is a generic method capable of handling many semiparametric models. Note that the GMAVE requires both available
information of variable grouping and use of high-dimensional kernel functions. This is a typical model fitting approach.
However, the requirements are often infeasible when group information is not available beforehand and certain limitations
could also experienced when the number of explanatory variables is large.

As is well known, there are many variables that do not significantly affect the response. Based on an initial investigation
on the dataset we described above, this is the case. Thus, to make regression modeling more efficient, we may remove
those variables in the modeling process rather than including all of the variables in a model first and then removing those
‘‘insignificant variables’’ later. The GMAVE cannot directly do this variable selection/screening.

In the literature, there are some relevant methods. Wang et al. [20] considered an additive multi-index model and
discussed the variable selection when GMAVE is applied. This is a ‘‘screening first; fitting later’’ approach for modeling high-
dimensional data because the grouping has been given beforehand. Fan and Lv [8] is another example that does not concern
grouping information. Alternatively, Bickel et al. [3] andMeinshausen Bühlmann [15] considered the ‘‘fitting first; screening
later’’ approach. But when the spatial structure is complex and the modeling is semiparametric, the ‘‘fitting first; screening
later’’ approach might have limitations. Furthermore, for parameter estimation, no semiparametric method handles the
sign-constrained issue that is important for practical interpretation, but less attention has been paid to it in the literature.

As such, to facilitate the semiparametric modeling procedure combined with grouping information and sparse structure,
we propose a novel modeling method. Our algorithm comprises three steps: (i) screening for selection; (ii) clustering
for variable grouping; and (iii) estimating sign-constrained parameters. Therefore, this is an integrated algorithm of
screening/clustering/sign-constrained estimation (SCSE). Unlike existing approaches, our algorithm could be considered
a ‘‘screening first; grouping second; fitting third’’ approach. As the algorithm is related to large-dimensional covariance
matrices, for justification, wewill give an estimation and its theoretical properties for high-dimensional time series together
with a special handling of the cross-validation procedure.

The article is organized as follows. In Section 2, the details of the SCSE procedure are described. Section 3 presents
the investigation on covariance matrix estimation when the process is either m-dependent or β-mixing. For more general
processes, the theoretical investigationdeserves further research. The spatial structure of large panels ofmacroeconomic and
financial times series is studied in Section 5 such that proper semiparametric structure for estimating several key economic
measures can be found. Section 4 is devoted to numerical evaluation for the performance of the SCSE algorithm. Section 6
contains a brief discussion of further research topics and all technical proofs are sketched in the Appendix.

2. Screening–clustering–sign-constrained estimation

2.1. A visualized description of the algorithm

To describe the basic idea of the algorithm, we first study the differences among various semiparametric models from
a graphical perspective. If we use a vertex in the graph to represent a relevant variable, a crossed vertex to represent an
‘‘unrelated’’ variable, a solid edge in a ‘‘block’’ to represent the linear relationships among variables inside and a banded
edge (connecting a ‘‘block’’ with the dependent variable Y ) to represent a nonparametric link function, thenwe can visualize
different semiparametric models through corresponding graphs.

For example, we can create Fig. 1 (left panel) for the single index model, Fig. 1 (middle panel) for the additive model and
Fig. 1 (right panel) for the more general multiple index model, among many others. The underlying difference among the
various semiparametricmodels is the allocation of the nonparametric link function and linearity through variable clustering.

Consequently, assuming that all of the variables have been included, if we can find the corresponding graph types, we can
construct the right class of semiparametric models. Note that sparse correlation matrices are very useful in graphs because
zero partial correlations help establish independence and conditional independent relations in the context of graphs and
thus imply a graphical structure.

For example, if we have a sparse covariance matrix for Y , X1, . . . , X9 as displayed in Fig. 2, we know that X1, . . . , X6 are
‘‘relevant’’ to Y , and due to the ‘‘block’’ structure with respect to X1, X2, X3 and X4, X5, we can construct the following class
of semiparametric models:

E(Y ) = g1(X1β1 + X2β2 + X3β3) + g2(X4β4 + X5β5) + g3(X6β6). (1)
More generally, the modeling is as follows. For given variables X1, . . . , XJ−1 and Y (or XJ ), we try to find the index sets

A1, . . . , AS (possibly with overlapping elements) such that Y could be well approximated by:
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