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a b s t r a c t

In this paper, we consider subset deletion diagnostics for fixed effects (coefficient
functions), random effects and one variance component in varying coefficient mixed
models (VCMMs). Some simple updated formulas are obtained, and based onwhich, Cook’s
distance, joint influence and conditional influence are also investigated. Besides, since
mean shift outlier models (MSOMs) are also efficient to detect outliers, we establish an
equivalence between deletion models and MSOMs, which is not only suitable for fixed
effects but also for random effects, and test statistics for outliers are then constructed.
As a byproduct, we obtain the nonparametric ‘‘delete = replace’’ identity. Our influence
diagnostics methods are illustrated through a simulated example and a real data set.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Since not all the observations in a data set play an equal role in determining estimators, tests and other statistics, it is
important to detect influential observations in data analysis. To identify anomalous observation(s), various approaches have
been proposed in the literature, including deletion diagnostics, MSOMs and local influence analysis.
For linear models (LMs), [1] used case deletion to identify influential observations and defined a distance that is now

termed as Cook’s distance in the literature, to measure the effect of removing one observation on estimator or fitted value.
Besides, [2,3], among others, studied diagnostics for generalized linear models. Smoothing methods which allow for a
nonparametric relationship to be estimated at least for some of the predictors were also considered. For instance, [4–6].
Someworks have been done for correlated data. For example, [7,8] discussed LMs; [9,10] considered linearmixedmodels

(LMMs). Haslett and Dillane [11] proved a ‘delete = replace’ identity in LMs and applied it to deletion diagnostics for
estimators of variance components. Xiang, Tse and Lee [12] investigated generalized linear mixed models.
However, except that [13] studied influence diagnostics and outlier tests for semiparametric mixed models (SMMs),

to the best of our knowledge, there are few references about influence analysis when the nonparametric part appears in
correlated data. As an extension of LMMs, VCMMs can be usedmore reasonably to represent underlying covariate effects by
representing these covariate effects by smooth but otherwise arbitrary functions of time, with random effects used tomodel
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the correlation induced by among-subject andwithin-subject variation. In practice, varying coefficientmodels (VCMs) other
than VCMMs have been studied in the literature such as [14–17]. Zhang [18] first introduced generalized varying coefficient
mixedmodels (GVCMMs) for longitudinal data and considered testingwhether the coefficient function is polynomial or not.
Except for this, little is found about VCMMs. Its influence analysis is certainly of interest and becomes the target of the paper.
The following points are worth to mentioning.

• Compared with [13], where, given the smoothing parameter and the covariance matrix of Gaussian responses, deletion
diagnostics for fixed effects was considered, we investigate influence diagnostics for fixed effects, random effects and
the deletion updated formula for the variance component in VCMMs. Furthermore, the normality assumption on the
distribution of the involved variables, which is commonly assumed in the literature of mixed models, can be avoided.
• For LMs [19], a broader class of parametric models [20], and SMMs [13], the equivalence, of the estimators for fixed
effects, between the subset deletion model and the MSOM has been established. In this paper, we first show that the
same phenomenon holds not only for the estimators of fixed effects but also for the predictors of random effects. More
than this, we establish the equivalence between the estimators of the indicator parameters inMSOMs and the conditional
residual predictors in deletion models. Our methods can also be used to other mixed models, such as SMMs, to obtain
the equivalence.
• Under the normality assumption on randomeffects and errors, the intuitive ‘‘delete= replace’’ identity for nonparametric
cases is also established from another perspective.

The rest of the paper is organized as follows. In Section 2, we present two kinds of estimating the coefficient functions and
of predicting the random effects in VCMMswith general random errors. The updated formulas of subset deletion diagnostics
for fixed effects, random effects and the variance component are developed in Section 3. The intuitive ‘‘Delete = Replace’’
identity in nonparametric cases is obtained. Moreover, Cook’s distance, joint influence and conditional influence based on
these updated formulas are also investigated. In Section 4, we present another diagnosticmethod—MSOMs and show a close
connection to deletion diagnostics. The methods are illustrated through a simulated data set and a real data set in Section 5.
All the proofs for the theorems are postponed in the Appendix. Throughout the paper, we shall use letters in bold to denote
matrices and vectors.

2. VCMM and estimation

In this section, we present the VCMM and related estimators and predictors. The VCMM under study is as

yij =
p∑
l=1

x(l)ij βl(tij)+ zijτbi + εij (j = 1, . . . , ni; i = 1, . . . ,m) (1)

where yij is the response for the ith subject at time point tij; bi having mean zero and covariance σ 2b Di, are independent
qi × 1 vectors of random effects with covariates zij; βl(·)(l = 1, . . . , p) that are associated with covariates x

(l)
ij , are twice-

differentiable smooth arbitrary functions on some finite interval.
For the sake of convenience, we rewrite model (1) in a matrix form. Denote the subject-specific vectors by X(l)i = diag

(x(l)i1 , . . . , x
(l)
ini
), Zi = (zτi1, . . . , z

τ
ini
)τ , Yi, and εi are defined similarly. Let t0 = (t01 , . . . , t

0
r )
τ be the vector of ordered

distinct values of the time points {tij : j = 1, . . . , ni; i = 1, . . . ,m} with r being the number of distinct time points,
βl = (βl(t

0
1 ), . . . , βl(t

0
r ))

τ (l = 1, . . . , p) and β = (βτ1, . . . ,β
τ
p)
τ . Let Nl(1 ≤ j ≤ p) be the incidence matrix mapping {tij}

to t0, we have (βl(t11), . . . , βl(tmnm))
τ
= Nlβl, for 1 ≤ l ≤ p. Write N = diag(N1, . . . ,Np), and similarly for Z. Let Y, b and ε

denote the vectors obtained from stacking up them subject-specific vectors of the symbol, for instance, b = (bτ1, . . . , b
τ
m)
τ .

Besides, let X = (X(1), . . . ,X(p)) and X̃ = XN.
Thus, model (1) can be rewritten as

Y = X̃β + Zb+ ε. (2)

The covariance matrix of b is equal to σ 2b D with D = diag(D1,D2, . . . ,Dm). D is assumed to be given and the covariance
matrix of the randomerror vector ε is assumed to beσ 2ε Rwith a givenR and anunknownσ

2
ε . The assumptions are identical to

those in Crainiceanu and Ruppert [21]. In this paper, σ 2b /σ
2
ε and σ

2
b or σ

2
ε are assumed to be known. For notational simplicity,

σ 2b /σ
2
ε D is still denoted by D. Thus, the covariance matrix of Y is σ

2
ε Vwith V = R+ ZDZτ . Note that in the form, although it

seems a linear model, for every observation, there is an unknown parameter βij = β(tij). In other words, it is of course not a
parametric model at all. We write it in a linear structure only for convenience of presentation for the later development in
the following sections. In the next section, we use a nonparametric estimation procedure to estimate the unknowns in the
model.
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