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a b s t r a c t

This paper aims to discuss some practical problems on linear state space models with esti-
mated parameters.While the existing research focuses on the predictionmean square error
of the Kalman filter estimators, this work presents some results on bias propagation into
both one-step ahead and update estimators, namely, non recursive analytical expressions
for them. In particular, it is discussed the impact of the bias in the invariant state space
models. The theoretical results presented in this work provide an adaptive correction pro-
cedure based on any parameters estimation method (for instance, maximum likelihood or
distribution-free estimators). This procedure is applied to two data set: in the calibration of
radar precipitation estimates and in the global mean land–ocean temperature index mod-
eling.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

State space models have been largely applied in several areas of applied statistics. In particular, the linear state space
models have desirable properties and they have a huge potential in time series modeling that incorporates latent processes.

Once a model is placed in the linear state space form, the most usual algorithm to predict the latent process, the state,
is the Kalman filter algorithm. This algorithm is a procedure for computing, at each time t (t = 1, 2, . . .), the optimal
estimator of the state vector based on the available information until t and its success lies on the fact that is an online
estimation procedure. The main goal of the Kalman filter algorithm is to find predictions for the unobservable variables
based on observable variables related to each other through a set of equations forming the state space model. Indeed, in the
context of linear state spacemodels, the Kalman filter produces the best linear unbiased estimators.When the errors and the
initial state are Gaussian, the Kalman filter estimators are the best unbiased estimators in the sense of the minimum mean
square error. However, the optimal properties only can be guaranteed when all model’s parameters are known (Harvey,
1996). If the model is nonlinear, it must be considered the equation of optimal filtering (Stratonovich, 1960; Dobrovidov
et al., 2012). However, as it was proved inMarkovich (2015), when the unobservable Markov sequence is defined by a linear
equation with a Gaussian noise, the equation of optimal filtering coincides with the classical Kalman filter.

In practice, some or even all model’s parameters are unknown and have to be estimated. When the true parameters Θ

of the linear state space model are, for instance, substituted by their maximum likelihood ML (or other) estimates, Θ , the
theoretical properties of Kalman filter estimators are no longer valid. The usual approach in the analysis of the effects (impli-
cations) of applying estimates rather than using true values is to recalculate the mean square errors of both one-step-ahead
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estimator and update estimator of the unknown state βt , Pt|t−1 and Pt|t , respectively. This approach is discussed in the lit-
erature, for instance in Ansley and Kohn (1986) and Hamilton (1986) or more recently in Pfeffermann and Tiller (2005) and
it relies on the fact that substituting the model parameters by their estimates in the theoretical mean square error (MSE)
expression, that assumes known parameters values, results in underestimation of the true MSE.

Indeed, denoting byβt|t(Θ) the optimal filter estimator of βt based on the observations up to time t substituting Θ byΘ , the MSE of the estimation error is

MSEt|t = E
βt|t(Θ) − βt

 βt|t(Θ) − βt
′

= Pt|t + E
βt|t −βt|t(Θ)

 βt|t −βt|t(Θ)
′

.

The first term of the sum is the uncertainty contribution of the Kalman filter resulting from the estimation of state when
the model parameters are known. The second term reflects the uncertainty due to the estimation of parameters.

Usually, the existent literature investigates methodologies to the second parcel, that is, the contribution to the MSEt|t
resulting from ‘parameters uncertainty’. In Hamilton (1986) it is suggested the application of Monte Carlo techniques
combining with the ML estimation. From another perspective, Ansley and Kohn (1986) proposed to approximate Pt|t by
Pt|t(Θ) and to expand βt|t(Θ) around βt|t until the second term. These works were extended in a Bayesian approach in
Quenneville and Singh (2000). Wall and Stoffer (2002) proposed a bootstrap procedure for evaluating conditional forecast
errors that requires the backward representation of the model. Tsimikas and Ledolter (1994) presented an alternative way
to build the restricted likelihood function, also using mixed effects models.

Pfeffermann and Tiller (2005) studied non-parametric and parametric bootstrap methods. Also, a bootstrap approach
was adopted in the estimation of the mean squared prediction error of the best linear estimator of nonlinear functions of
finitelymany future observations in a stationary time series in Bandyopadhyay and Lahiri (2010). Rodríguez and Ruiz (2012)
proposed two new bootstrap procedures to obtain MSE of the unobserved states which have better finite sample properties
than both bootstraps alternatives and procedures based on the asymptotic approximation of the parameter distribution.

In this work it is investigated the parameters bias propagation into Kalman filter estimators, which allows proposing
an adaptive correction algorithm of Kalman filter estimators bias based on an initial parameters estimates. This procedure
allows an improvement in modeling of two relevant applications: the calibration of radar precipitation estimates and in the
modeling of the global mean land–ocean temperature index between 1880 and 2013.

2. The state space model

Consider the linear state space model represented by the equations

Yt = Htβt + et (1)
βt = µ + Φ(βt−1 − µ) + εt , (2)

where Yt is a k×1 vector time series of observable variables at time t , which are relatedwith them×1 vector of unobservable
state variables, βt , known as the state vector, µ is a m × 1 vector of parameters, Φ is a m × m transition matrix and the
disturbances et and ϵt are k × 1 and m × 1 vectors, respectively, of serially uncorrelated white noise processes with zero
mean and covariance matrices Σe = E(ete′

t), Σε = E(εtε
′
t) and E(etϵ′

s) = 0 for all t and s. Although the state process {βt} is
not observable, it is generated by a first-order autoregressive process according to (2), the transition equation. All the k × m
matrices Ht are assumed to be known at time t − 1.

An important class of state space models is given by Gaussian linear state space models when the disturbances et and εt
and the initial state are Gaussian. The state space model (1)–(2) does not impose any restriction on the stationarity of the
state process {βt}. However, in many applications there is no reason to assume that the state process is not stationary.

When the state process’s stationarity is suitable it can be assumed that the state vector βt is a stationary VAR(1) process
with mean E(βt) = µ and transition matrix Φ with all eigenvalues inside the unit circle, i.e.,

|λi(Φ)| < 1 for all λi such that |Φ − λiI| = 0, (3)

and with covariance matrix Σ , which is the solution of the equation Σ = ΦΣΦ ′
+ Σε .

Usually, the linear state space models are represented considering a state equation as

βt = Φβt−1 + εt

or in a simple way taking Φ = I , i.e., considering that the state process {βt} is a random walk. However, the state space
formulation (1)–(2) is more general since this formulation additionally allows the state to be a nonzero mean stationary
process. When the state process {βt} is non-stationary the transition equation can be rewritten as βt = C + Φβt−1 + εt ,
where C = (I − Φ)µ and the state may be non-stationary VAR(1) process.
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