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a b s t r a c t

To implement the extremal quantile regression, one needs to have an accurate estimate of
the tail index that is involved in the limit distributions of extremal regression quantiles.
However, the existing quantile estimation methods are often unstable owing to data
sparsity in the tails. In this paper, we propose the Hill estimator for the tail index based on
regression quantiles, and construct a new estimator for high conditional quantiles through
an extrapolation of the intermediate regression quantiles. In both theory and simulation,
we demonstrate that the proposed estimators are more efficient than those based on the
refined Pickands estimator of the tail index. The applicability of the new method is also
illustrated on the Occidental Petroleum daily stock return data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the influential paper of Chernozhukov (2005), the author developed a theory of quantile regression in the tails by
joining the linear quantile regression model together with the extreme value theory (EVT) and obtained the asymptotic
properties of extremal (extremeorder and intermediate order) quantile regression estimators. Specifically, itwas shown that
the intermediate order regression quantiles and their functionals converge in distribution to normal vectorswith covariance
matrices dependent on the tail index γ , and the extreme order regression quantiles converge weakly to argmin functionals
of stochastic integrals of Poisson processes that are also dependent on the tail index. To implement the extremal quantile
regression, we hence need to have an accurate estimate of the tail index. Chernozhukov (2005) provided the Pickands
estimator of γ based on regression quantiles. However, the variance of the Pickands estimator, as implied in Theorem 3.3.5
in de Haan and Ferreira (2006), can be huge for large values of the tail index, and consequently, the estimated extreme
regression quantiles may not be reliable. On the other hand, it is known that the conventional quantile estimation methods
are often unstable owing to data sparseness in the tails. In view of this, in this paperwe propose the Hill estimator for the tail
index based on regression quantiles, and meanwhile, examine the accuracy of the estimation for high conditional quantiles
through an extrapolation of the intermediate regression quantiles.

Needless to say, estimation of high unconditional quantiles is very important and has been investigated extensively in the
literature, forwhichwe refer to deHaan and Ferreira (2006) for an overviewof the availablemethodology.Wang et al. (2012)
estimated high conditional quantiles for heavy-tailed distribution through an extrapolation in the conventional quantile
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regression framework.Wang and Li (2013) estimated extreme conditional quantiles through power transformation and also
established the asymptotic normality for the proposed tail index and extreme conditional quantiles estimators. However,
we note that their estimators are asymptotically biased under the strong second order condition. More details on the second
order condition can be seen, for instance, in de Haan and Ferreira (2006). In the content of nonlinear quantile regression,
Daouia et al. (2011) introduced nonparametric kernel methods to estimate arbitrary high order conditional quantiles, in
particular for the setting of heavy-tailed conditional distributions. Daouia et al. (2013) extended themethodology in Daouia
et al. (2011) to adapt tomore general settings. Furthermore, Gardes et al. (2010) and Gardes and Girard (2012) have devoted
to the estimation of functional extreme quantiles based on nonparametric methods when functional covariate information
is available.

The remainder of this paper is organized as follows. In Section 2, we specify the distribution form to be dealt with,
introduce the common assumptions, and present our new methodology for estimating high conditional quantiles and
the tail index. Theoretical results of the proposed estimators, together with some specific results for certain heavy-
tailed distributions, are presented in Section 3. In Section 4, we conduct simulation studies to evaluate the finite sample
performance of the proposed estimators and compare them with existing methods. We then illustrate the applicability of
the newmethod on the Occidental Petroleumdaily stock return in Section 5, and provide the technical proofs in Appendices.

2. Methodology

In this section, we first present the required assumptions and then propose our new estimator for high conditional
quantiles and also the Hill estimator of the tail index based on regression quantiles.

2.1. Assumptions

Let {(Xi, Yi) , i = 1, . . . , n} be a sequence of independent random vectors from the population of (X, Y ), where X =

(1, X ′

−1)
′ is a d-dimensional covariate and Y is a 1-dimensional response. Let X be the support set of X and FY (y|x) be the

continuous conditional distribution function of Y given X = x. Let also F̄Y (y|x) = 1 − FY (y|x) and qY (τ |x) = F̄−1
Y (y|x) =

inf

y : F̄Y (y|x) ≤ τ


be the related (1 − τ)th conditional quantile. In this paper, we consider the following linear quantile

regression model:

qY (τ |x) = x′β(τ), ∀τ ∈ [0, τu], x ∈ X, (2.1)

with some real 0 < τu ≤ 1. The assumptions in this paper are listed as follows.
(A1) There exist a bounded vector βr ∈ Rd and some distribution function Fu such that

U ≡ Y − X ′βr with x∗

U = ∞, (2.2)

F̄U(t|x) ∼ K(x) · F̄u(t) uniformly in x ∈ X, as t ↑ x∗

U , (2.3)

where x∗

U = inf

y : F̄U(y|x) ≤ 0


is the upper endpoint. F̄U(·|x) is the conditional survival function of U given X = x,

andK(·) > 0 is a continuous bounded function onX. For simplicity, letK(x) = 1 at x = µX = EX , and F̄u(t) ≡ F̄U(t|µX ).
(A2) For the random variable u in (A1), we assume that F̄u(t) = P(u > t) satisfies

F̄u(t) = c exp

−

 t

1


1
γ

− ε(v)


dv
v


, (2.4)

where c > 0, γ > 0, ε : (0, +∞) → R, and ε(t) → 0 as t → ∞.
(A3) X is a compact set in Rd and E(XX ′) is a positive definite matrix. For simplicity, let µX = EX = (1, 0, . . . , 0)′.
(A4) Assume that

(i)
∂ F̄−1

U (τ |x)
∂τ

∼
∂ F̄−1

u (τ/K(x))
∂τ

uniformly in x ∈ X,

(ii)
−∂ F̄−1

u (τ )

∂τ
is regularly varying at 0 with exponent − γ − 1.

(2.5)

(A5) |ε(t)| is a continuous function and is ultimately non-increasing.

For assumption (A2), it is a special case of Karamata’s representation (see corollary of Theorem 0.6 in Resnick, 1987)
of a regularly varying function. (A1), (A3) and (A4) are essentially the same as conditions R1–R3 in Chernozhukov (2005),
respectively. The last assumption is also mild in the regularly varying framework. It is noteworthy that many important
heavy-tailed distributions are of form (2.4), for which we have provided four examples in Table 1. Moreover, (2.4) implies
that F̄u(·) is regularly varying at infinity with index −1/γ , i.e., F̄u(·) ∈ RV (−1/γ ). That is to say for all λ > 0,

lim
t→∞

F̄u(λt)
F̄u(t)

= λ
−

1
γ . (2.6)
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