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a b s t r a c t

Rao and Teh (2013) introduced an efficient MCMC algorithm for sampling from the
posterior distribution of a hiddenMarkov jump process. The algorithm is based on the idea
of sampling virtual jumps. In the present paper we show that the Markov chain generated
by Rao and Teh’s algorithm is geometrically ergodic. To this end we establish a geometric
drift condition towards a small set. We work under the assumption that the parameters of
the hidden process are known and the goal is to restore its trajectory.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Markov jump processes (MJP) are natural extension of Markov chains to continuous time. They are widely applied in
modelling of the phenomena of chemical, biological, economic and other sciences.

In many applications it is necessary to consider a situation where the trajectory of a MJP is not observed directly,
only partial and noisy observations are available. Typically, the posterior distribution over trajectories is then analytically
intractable. In the literature there exist several approaches to the abovementioned problem: based on sampling (Boys et al.,
2008; El-Hay et al., 2008; Fan and Shelton, 2008; Golightly and Wilkinson, 2011, 2014; Golightly et al., 2015; Nodelman
et al., 2002; Rao and Teh, 2013, 2012), and also based on numerical approximations. To the best of our knowledge the most
general efficient method for a finite state space is that proposed by Rao and Teh (2013), and extended to a more general
class of continuous time discrete systems in Rao and Teh (2012). Although themethod proposed by Fearnhead and Sherlock
(2006), after a minor modification, can be used to sample exactly from the posterior distribution of a homogeneous MJP,
their algorithm involves calculating matrix exponentials, which is computationally expensive.

In the present paper we establish geometric ergodicity of Rao and Teh’s algorithm for homogeneous MJPs. Geometric
ergodicity is a key property of Markov chains which implies Central Limit Theorem for sample averages.

Note that in practice the parameters of the hiddenMJPmay be unknown and have to be estimated. Then the Rao and Teh’s
algorithm can be combined with an additional step (Gibbs or Metropolis–Hastings) updating these parameters, according
to some posterior distribution. Such extended versions of the Rao and Teh’s algorithm are not considered in our paper.
We assume that the probability law of a hidden MJP is known.
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The rest of the paper is organized as follows. In Section 2 we briefly introduce hidden Markov jump processes, next in
Section 3 we recall the Rao and Teh’s algorithm. The main result is proved in Section 4.

2. Hidden Markov jump processes

Consider a continuous-timehomogeneousMarkov process {X(t), tmin
≤ t ≤ tmax

} on a finite state spaceS. Its probability
law is defined via the initial distribution ν(s) = P(X(tmin) = s) and the transition intensities

Q (s, s′) = lim
h→0

1
h

P(X(t + h) = s′|X(t) = s)

for s, s′ ∈ S, s ≠ s′. Let Q (s) =


s′≠s Q (s, s′) denote the intensity of leaving state s. For definiteness, assume that X has
right-continuous trajectories. We say X is a Markov jump process (MJP).

Suppose that process X cannot be directly observed but we can observe some random quantity Y with probability
distribution L(Y |X). Let us say Y is the evidence and L is the likelihood. The problem is to restore the hidden trajectory
of X given Y . From the Bayesian perspective, the goal is to compute/approximate/sample from the posterior

p(X |Y ) ∝ p(X)L(Y |X).

Function L, transition probabilities Q and initial distribution ν are assumed to be known. To get the explicit form of
posterior distribution we consider a typical form of noisy observation. Assume that the trajectory X([tmin, tmax

]) is observed
independently at k deterministic time points with some random errors. Formally, we observe Y = (Y1, . . . , Yk) where

L(Y |X) =

k
j=1

Lj(Yj|X(tobsj )), (1)

for some fixed known points tmin
≤ tobs1 < · · · < tobsk ≤ tmax.

3. Uniformization and Rao and Teh’s algorithm

In this section we describe a classical and well-known technique of uniformization (Jensen, 1953).
A Markov jump process can be represented in terms of potential times of jumps and the corresponding states. Every

trajectory X([tmin, tmax
]) is right continuous and piecewise constant: X(t) = Si−1 for Ti−1 ≤ t < Ti, where random variables

Ti are such that tmin < T1 < · · · < TN < tmax (by convention, T0 = tmin and tmax < TN+1). The random sequence of
states S = (S0, S1, . . . , SN) such that Si = X(Ti) is called a skeleton. We do not assume that Si−1 ≠ Si, and therefore the two
sequences

T
S


=


tmin T1 · · · Ti · · · TN tmax

S0 S1 · · · Si · · · SN


represent the process X in a redundant way: many pairs (T , S) correspond to the same trajectory X([tmin, tmax

]). Let
J = {i ∈ [1 : N] : Si−1 ≠ Si} ∪ {0}, so that TJ = (Ti : i ∈ J) are moments of true jumps and T−J = T \ TJ = (Ti : i ∉ J)
are virtual jumps. We write [l : r] = {l, l + 1, . . . , r}. By a harmless abuse of notation, we identify increasing sequences of
points in [tmin, tmax

] with finite sets. Note that the trajectory of X is uniquely defined by (TJ , SJ). Let us write X ≡ (TJ , SJ)
and also use the notation J(X) = TJ for the set of true jump times.

Uniformization obtains if T is a sequence of consecutive points of a homogeneous Poisson processwith intensity λ, where
λ ≥ Qmax

= maxs Q (s). The skeleton S is then (independently of T ) a discrete-time, homogeneous Markov chain with the
initial distribution ν and the transition matrix

P(s, s′) =


Q (s, s′)

λ
if s ≠ s′;

1 −
Q (s)
λ

if s = s′.
(2)

Rao and Teh (2013) exploit uniformization to construct a special version of Gibbs sampler which converges to the
posterior p(X |Y ). The key facts behind their algorithm are the following. First, given the trajectory X ≡ (TJ , SJ) the
conditional distribution of virtual jump times T−J is that of the non-homogeneous (actually piecewise homogeneous) Poisson
process with intensity λ − Q (X(t)) ≥ 0. Second, this distribution does not change if we introduce the likelihood. Indeed,
L(Y |X) = L(Y |TJ , SJ), so Y and T−J are conditionally independent given (TJ , SJ) and thus p(T−J |TJ , SJ , Y ) = p(T−J |TJ , SJ). Third,
the conditional distribution p(S|T , Y ) is that of a hidden discrete time Markov chain and can be efficiently sampled from
using the algorithm FFBS (Forward Filtering–Backward Sampling, Carter and Kohn (1994) and Frühwirth-Schnatter (1994)).

The Rao and Teh’s algorithm generates a Markov chain X0, X1, . . . , Xm, . . . (where Xm = Xm([tmin, tmax
]) is a trajectory

of an MJP), convergent to p(X |Y ), where Y = (Y1, . . . , Yk) is a vector of observations with the probability distribution of the
form (1). A single step, that is the rule of transition from Xm−1 = X to Xm = X ′ is described in Algorithm 1.

Convergence of the algorithm has been shown by its authors in Rao and Teh (2013). It follows from the fact that the chain
has the stationary distribution p(X |Y ) and is irreducible and aperiodic, provided that λ > Qmax.
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