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a b s t r a c t

In population studies, it is standard to sample data via designs in which the population is
divided into strata, with the different strata assigned different probabilities of inclusion. Al-
though there have been some proposals for including sample survey weights into Bayesian
analyses, existing methods require complex models or ignore the stratified design under-
lying the survey weights. We propose a simple approach based on modeling the distribu-
tion of the selected sample as a mixture, with the mixture weights appropriately adjusted,
while accounting for uncertainty in the adjustment. We focus for simplicity on Dirichlet
process mixtures but the proposed approach can be applied more broadly. We sketch a
simple Markov chain Monte Carlo algorithm for computation, and assess the approach via
simulations and an application.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In sample surveys, it is routine to conduct stratified sampling designs to ensure that a broad variety of groups are
adequately represented in the sample. In particular, the population is divided intomutually exclusive strata having different
probabilities of inclusion. Data from stratified probability designs cannot be analyzed as if they are a random sample from
the super-population without potentially large amounts of bias. To correct for discrepancies in the statistical analysis,
survey weights are constructed. There is a rich literature on including adjustments for stratified sampling designs in
estimation. However, the vast majority of such methods are not appropriate in model-based inferences, particularly under
nonparametric Bayes frameworks.

Little (2004) and Gelman (2007) clarify the importance of including survey weights into model-based analyses. Zheng
and Little (2003, 2005) propose a nonparametric spline model and Chen et al. (2010) extend the framework for binary vari-
ables. Although these approaches can flexibly connect the survey weights with the response, they rely on the assumption
of survey weights being known for all population units. Zangeneh and Little (2012) propose a modification to allow the
number of non-sampled units to be unknown. Si et al. (2015) instead propose a nonparametric model in which the survey
weights are linked with a response through a Gaussian process regression. However, additional modeling of survey weights
for non-sampled subjects in the population can lead to highly complex models.
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In this article, we propose a simple approach in which we apply standard mixture models, such as Dirichlet process
mixtures, for the selected sample, and then adjust the mixture weights based on the survey weights. We allow probabilis-
tic uncertainty in this adjustment in a Bayesian manner. Posterior computation relies on a simple modification to add an
additional step to Markov chain Monte Carlo algorithms for mixture models.

2. Mixture models with survey weights

2.1. Adjusted density estimates

Let y1, . . . , yN denote independently and identically distributed observations from a superpopulation density f0 with
yi ∈ R for i ∈ D = {1, . . . ,N}. From the finite population D, n subjects are sampled, with wi = c/πi the survey weight for
subject i, c a positive constant, andπi the inclusion probability for i ∈ D.We assumeD can be divided intomutually exclusive
subpopulations D1, . . . ,DM , with {yi, i ∈ Dm} independently and identically distributed from density fm, form = 1, . . . ,M .
Then, f0 can be expressed as

f0(y) =

M
m=1

νmfm(y), (1)

where νm ≥ 0 and
M

m=1 νm = 1. By applying kernel density estimation to each fm in (1), Buskirk (1998) and Bellhouse and
Stafford (1999) propose an adjusted density estimate,

f̂0(y) =


i∈S

w̃i

b
K


y − yi

b


, (2)

where S ⊂ D are the selected subjects in the survey, w̃i = wi/


j∈S wj, K is a kernel function and b > 0. Estimator (2)
adjusts for bias in the usual kernel estimator applied to sample S by modifying the weight for the ith subject from 1/n to w̃i.
This adjustment leads to consistency under some conditions (Buskirk and Lohr, 2005).

2.2. Bayesian adjustments with uncertainty

Section 2.1 focuses on univariate continuous variables, while our goal is to develop a general approach for adjusting
posterior distributions to take into account sample survey weights. Let y ∈ Y denote a random variable, with Y a Polish
space that may correspond to a p-dimensional Euclidean space, a discrete space, a mixed continuous and discrete space, a
non-Euclidean Riemannianmanifold, such as a sphere, and other cases. Extending (1) to general spaces, we let f0(·) and fm(·),
for m = 1, . . . ,M , denote densities on Y with respect to a dominating measure µ. The density in the mth subpopulation is
expressed as a mixture,

fm(y) =

H
h=1

νmhf (y | θh), (3)

where νmh ≥ 0,
H

h=1 νmh = 1 and θh are parameters characterizing the hth mixture component. Then, f0 can be
approximately expressed as a mixture having the same kernels as in (3) but with adjusted weights as in (2).

Theorem 1. Let si ∈ {1, . . . ,H} denote the mixture index for subject i for i ∈ S. Let Sh = {i : si = h, i ∈ S}, for h = 1, . . . ,H.
Then, for large N and n,

f0(y) ≈

H
h=1


i∈Sh

wi/c

N
f (y | θh) ≈


i∈S

w̃if (y | θsi). (4)

Proof. Letting Nm be the number of subjects in Dm, Nm/N → νm as N → ∞ by the law of large numbers. Letting w∗
m and

π∗
m denote the survey weight and inclusion probability for the mth subpopulation, wi = w∗

m and πi = π∗
m for i ∈ Dm. From

(1) and (3), f0 can be expressed as

f0(y) =

M
m=1

νmfm(y) ≈

M
m=1

Nm

N
fm(y) =

H
h=1

M
m=1

Nmνmh

N
f (y | θh)

≈

H
h=1


i∈Sh

wi/c

N
f (y | θh) ≈


i∈S

w̃if (y | θsi). (5)
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