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a b s t r a c t

At the nth step of a time-inhomogeneous infinite Polya process, either a new bin is created
and a ball is put in that bin, or a ball is put into an existing bin, in which case the bin is
chosen according to a preferential attachment type rule. We introduce a new class of such
processes and find the asymptotics of the expected number of bins of size k, for k fixed,
as n → ∞.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Simon (1955) introduced a model for generating observed word frequencies in data sets from English and other
languages. Initially, at time n = 1, there is one word and it is assumed that one word is added at time n for n ≥ 2.
At time n, let N(n) denote the number of different words and let Wi(n) denote the number of copies of word i, so that
W1(n)+W2(n)+· · ·+WN(n) = n. At each time step, either a newword is added with probability α, or a copy of an existing
word is added with probability 1 − α. If a copy of an existing word is added at time n + 1, then a copy of word i is made
with probability Wi(n)

n . The way existing words are chosen to be copied is similar to the preferential attachment rule used in
generating scale-free graphs; see Albert and Barabási (2002) and Barabási and Albert (1999). Simon’s model has a limiting
distributionwhichwas first obtained in a paper of Yule (1925) for a different preferential attachmentmodel. It is also related
to the Polya urn model (Johnson and Kotz, 1977) and is equivalent to the infinite Polya process model studied in Chung and
Lu (2006). In the infinite Polya process, words are replaced by bins and the number of copies of a given word corresponds
to the number of balls in a bin. Initially, there is one bin containing one ball, and whenever a new bin is created, it is created
containing one ball.

Another widely studied urnmodel is that of Hoppe (1984). Its description is identical to Simon’smodel, except that at the
nth time step (from n to n+1 balls) a new bin (containing one ball) is addedwith probability αn = θ/(θ +n) for a parameter
θ > 0. Hoppe’s urn model was extended by Dubins and Pitman, announced in Aldous and Hennequin (1985), to a way of
constructing random permutations called the Chinese restaurant process. The distribution of the process of cycle counts
in the Chinese restaurant process is called the Ewens sampling formula and is of fundamental importance in population
genetics (Ewens, 2004).

Simon (1955) was interested in altering his model so that α is a function of n and heuristically discussed two examples
with varying αn. It was noted by Eriksson and Sjöstrand (2012) that nothing is known for dependencies of αn on n beyond
the Polya and Hoppe models. We are motivated, therefore, to study the infinite Polya process under the condition

αn = θnr−1
+ O


nr−1−ϵ


, n ≥ 1, (1)
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where r ≤ 1 and ϵ > 0 are parameters. If r = 1, then θ ∈ [0, 1] must hold because the αn are probabilities, but otherwise
we allow θ ≥ 0. The case r = 0 includes Hoppe’s model and r = 1 includes Simon’s model. The cases r ∈ (−∞, 0) ∪ (0, 1)
do not previously seem to have been studied. The cases r ∈ (0, 1) interpolate between the two well known models already
described. The O(·) term in (1) introduces generality into our model.

LetW (n, k) be the number of bins containing k balls and let f (n, k) = E(W (n, k)). We find asymptotics for f (n, k) for the
infinite Polya process with αn given by (1). We assumeW (0, 1) = 1 and W (0, k) = 0 for k > 1. Our main result is

Theorem 1. For the infinite Polya process with αn given by (1) with r = 1, for fixed k ≥ 1,

f (n, k) = Mkn + O

n1−ϵ′


(2)

for a constant ϵ′ > 0, where Mk is given recursively by

M1 =
θ

2 − θ
, Mk = Mk−1

(1 − θ)(k − 1)
1 + k(1 − θ)

, k ≥ 2.

For αn given by (1) with r ∈ (−1, 1), for fixed k ≥ 1,

f (n, k) =
θ(k − 1)!
(r + 1)(k)

nr
+ O


nr−ϵ′


(3)

for a constant ϵ′ > 0, where x(k)
= x(x + 1)(x + 2) · · · (x + k − 1) is notation for rising factorial.

Theorem 1 gives a bound on f (n, k) when r ≤ −1: taking θ = 0 in the theorem shows that if αn = O

nr−1−ϵ


for

some r ∈ (−1, 1), then f (n, k) = O

nr−ϵ′


. It should be possible to extend the range of r in the theorem to r ≤ −1

by our methods, in which case the formulae for the f (n, k) may involve logarithmic factors of n. For example, if r = −1,
f (n, 1) =

θ log n
n (1 + O(n−ϵ′

)).
The following corollary examines limn→∞ f (n, k)/nr . In the cases other than θ = 0 and r = 1, θ = 1, the limit is

scale-free as k → ∞, meaning it decays polynomially.

Corollary 1. For all r , if θ = 0, then f (n, k) = o (nr) for all k as n → ∞. If r = 1, θ = 1, we have

lim
n→∞

f (n, k)/n =


1 if k = 1;
0 if k > 1.

As k → ∞, we have

lim
n→∞

f (n, k)/nr
∼


θ

2 − θ
Γ


3 − 2θ
1 − θ


k−

2−θ
1−θ if r = 1, θ ∈ (0, 1);

θΓ (r + 1)k−r−1 if r ∈ (−1, 1), θ > 0.

Proof. If θ = 0, then Mk = 0 for all k ≥ 1 and f (n, k) = O

nr−ϵ′


= o (nr). If θ = 1, then M1 = 1 and Mk = 0 for k ≥ 2.

Calculating as in Chung and Lu (2006) and Simon (1955), for k ≥ 2 we have

Mk = Mk−1
k − 1

k +
1

1−θ

and so

Mk =
θ

2 − θ

k
ℓ=2

ℓ − 1
ℓ +

1
1−θ

=
θ

2 − θ

Γ (k)Γ

2 +

1
1−θ


Γ

k + 1 +

1
1−θ

 =
θ

2 − θ

Γ (k)Γ
 3−2θ

1−θ


Γ

k +

2−θ
1−θ

 .

The well-known property of the Gamma function

Γ (k)
Γ (k + ρ)

∼ k−ρ, k → ∞,

results in

Mk ∼
θ

2 − θ
Γ


3 − 2θ
1 − θ


k−

2−θ
1−θ ,

giving us the result for r = 1, θ ∈ (0, 1). We also have

θ(k − 1)!
(r + 1)(k)

=
θΓ (k)Γ (r + 1)
Γ (r + k + 1)

∼ θΓ (r + 1)k−r−1

giving the result for r ∈ (−1, 1), θ > 0. �
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