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a b s t r a c t

Let X be amax-stable random vector with positive continuous density. It is proved that the
conditional independence of any collection of disjoint subvectors of X given the remaining
components implies their joint independence. We conclude that a broad class of tractable
max-stable models cannot exhibit an interesting Markov structure.
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1. Introduction

As pointed out by Dawid (1979) independence and conditional independence are key concepts in the theory of probability
and statistical inference. A collection of (not necessarily real-valued) random variables Y1, . . . , Yk on some probability space
(Ω, A, P) are called conditionally independent given the random variable Z (on the same probability space) if

P(Y1 ∈ A1, . . . , Yk ∈ Ak | Z) =

k
i=1

P(Yi ∈ Ai | Z) P-a.s.,

for anymeasurable sets A1, . . . , Ak from the respective state spaces. The conditioning is meant with respect to the σ -algebra
generated by Z . A particularly important example for the conditional independence to be an omnipresent attribute are
the Gaussian Markov random fields that have evolved as a useful tool in spatial statistics (Rue and Held, 2005; Lauritzen,
1996). Here, the zeros of the precision matrix (the inverse of the covariance matrix) of a Gaussian random vector represent
precisely the conditional independence of the respective components conditioned on the remaining components of the
random vector. Hence, sparse precision matrices are desirable for statistical inference.

In the analysis of the extreme values of a distribution (rather than fluctuations around mean values) max-stable models
have been frequently considered. We refer to Engelke et al. (2014), Naveau et al. (2009), Blanchet and Davison (2011) and
Buishand et al. (2008) for some spatial applications among many others. Their popularity originates from the fact that max-
stable distributions arise precisely as possible limits of location-scale normalizations of i.i.d. random elements. A random
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vector X is called max-stable if it satisfies the distributional equality anX + bn
D
= max(X (1), . . . , X (n)) for independent

copies X (1), . . . , X (n) of X for some appropriate normalizing sequences an > 0 and bn ∈ R, where all operations are meant
componentwise. If the components Xi of X are standard Fréchet distributed, i.e. P(Xi ≤ x) = exp(−1/x) for x ∈ (0, ∞), we
have an = n and bn = 0 and the random vector X will be called simple max-stable.

Let I be a non-empty finite set. It is well-known (cf. e.g. Resnick, 2008) that the distribution functions G of simple max-
stable random vectors X = (Xi)i∈I are in a one-to-one correspondence with Radon measures H on some reference sphere
S+ = {ω ∈ [0, ∞)I : ∥ω∥ = 1} that satisfy the moment conditions


ωiH(dω) = 1, i ∈ I . The correspondence between G

and H is given by the relation

G(x) = P(Xi ≤ xi, i ∈ I) = exp


−


S+

max
i∈I

ωi

xi
H(dω)


, x ∈ (0, ∞)I .

Here, ∥ · ∥ can be any norm on RI and H is often called angular or spectral measure.
In general, neither does independence imply conditional independence nor does conditional independence imply

independence of the subvectors of a random vector. Consider the following two simple examples which illustrate this fact in
the case of Gaussian random vectors (Example 1) and max-stable random vectors (Example 2). For notational convenience,
we write X ⊥⊥ Y if X and Y are independent and X ⊥⊥ Y | Z if X and Y are conditionally independent given Z and likewise
use the instructive notation ⊥⊥

k
i=1 Xi and ⊥⊥

k
i=1 Xi | Z if more than two random elements are involved.

Example 1. Let X1, X2, X3 be three independent standard normal random variables and, moreover, X4 = X1 + X2 and
X5 = X1 + X2 + X3. Then all subvectors of (Xi)

5
i=1 are Gaussian and

X1 ⊥⊥ X2, but not X1 ⊥⊥ X2 | X5, (1)
whereas X1 ⊥⊥ X5 | X4, but not X1 ⊥⊥ X5. (2)

Example 2. Let X1, X2, X3 be three independent standard Fréchet random variables and, moreover, X4 = max(X1, X2) and
X5 = max(X1, X2, X3). Then all subvectors of (Xi)i=1,...,5 are max-stable and both relations (1) and (2) hold true also in this
setting.

However, if the distribution of a max-stable random vector has a positive continuous density, then conditional
independence of any two subvectors conditioned on the remaining components implies already their independence. To
be precise, when we say that a random vector has a positive continuous density, we mean that the joint distribution of its
components has a positive continuous density. The following theorem is the main result of the present article. If X = (Xi)i∈I
is a random vector, we write XA for the subvector (Xi)i∈A if A ⊂ I . The same convention applies to non-random vectors
x = (xi)i∈I .

Theorem 1. Let X = (Xi)i∈I be a simple max-stable random vector with positive continuous density. Then, for any disjoint non-
empty subsets A and B of I, the conditional independence XA ⊥⊥ XB | XI\(A∪B) implies the independence XA ⊥⊥ XB.

A proof of this theorem is given in Section 3. Beforehand, some comments are in order.
(a) Firstly, the requirement of a positive continuous density for X is much less restrictive than requiring the spectral

measure H of X to admit such a density, cf. Beirlant et al. (2004, pp. 262–264) and references therein. For instance, fully
independent variables X = (Xi)i∈I have a discrete spectralmeasure, while their density exists and is positive and continuous.
A more subtle example is, for instance, the asymmetric logistic model (Tawn, 1990), which admits a continuous positive
density and whose spectral measure carries mass on all faces of S+, cf. also Example 3.

(b) Secondly, both random vectors (Xi)i=1,2,5 and (Xi)i=1,4,5 that were considered in the Gaussian case in Example 1 have
a positive continuous density on Rd. Hence, there exists no version for Theorem 1 for the Gaussian case.

(c) Note that the implication of Theorem 1 is the independence of XA and XB, not the independence of all three subvectors
XA, XB, XI\(A∪B).

(d) By means of the same argument that shows that pairwise independence of the components of a max-stable random
vector implies already their joint independence, wemay deduce a version of Theorem 1, in whichmore than two subvectors
are considered.

Corollary 2. Let X = (Xi)i∈I be a simple max-stable random vector with positive continuous density. Then, for any disjoint non-
empty subsets A1, . . . , Ak of I, the conditional independence ⊥⊥

k
i=1 XAi | XI\

k
i=1 Ai

implies the independence ⊥⊥
k
i=1 XAi .

(e) The non-degenerate univariate max-stable laws are classified up to location and scale by the one parameter family of
extreme value distributions indexed by γ ∈ R

Fγ (x) = exp(−(1 + γ x)−1/γ ), x ∈


(−1/γ , ∞) γ > 0,
R γ = 0,
(−∞, −1/γ ) γ < 0.
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