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a b s t r a c t

Intrinsic random functions (IRF) provide a versatile approach when the assumption of
second-order stationarity is not met. Here, we develop the IRF theory on the circle with its
universal kriging application. Unlike IRF in Euclidean spaces, where differential operations
are used to achieve stationarity, our result shows that low-frequency truncation of the
Fourier series representation of the IRF is required for such processes on the circle. All of
these features and developments are presented through the theory of reproducing kernel
Hilbert space. In addition, the connection between kriging and splines is also established,
demonstrating their equivalence on the circle.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

When a random process is considered on a circle, it is often assumed to be second-order stationary (or stationary for
short in the paper), that is, the mean of the process is constant over the circle and the covariance function at any two points
depends only on their angular distance (Yaglom, 1961; Roy, 1972; Roy andDufour, 1974; Dufour and Roy, 1976;Wood, 1995;
Gneiting, 1998). While stationarity is commonly assumed, it is often considered to be unrealistic in practice. In Euclidean
spaces, a large class of non-stationary phenomena may be represented through intrinsic random functions (IRF, Matheron,
1973; Cressie, 1993; Chilès and Delfiner, 2012). The properties of IRF in other spaces, such as the circle or sphere, are not
widely known. In this paper, the theory of IRF on the circle is developed,wherewe find that instead of differential operations,
truncation of the Fourier series representation becomes essential for IRF on the circle. This can be presented in the context
of the reproducing kernel Hilbert space (RKHS, Aronszajn, 1950; Wahba, 1990a). We formally make such a connection and
further relate universal kriging with the smoothing formula in RKHS. Based on this approach, we are able to demonstrate
the equivalence between splines and kriging on the circle.

2. IRF and RKHS

A key component for IRF is the allowable measure. Based on Matheron (1973) and Chilès and Delfiner (2012, Chapter 4),
a discrete measure λ =

m
i=1 λiδ(ti) on a unit circle S, where ti ∈ S, λi ∈ R and δ(·) is the Dirac measure, is allowable at the

order of an integer κ(κ ≥ 0) if it annihilates all trigonometric functions of order k < κ . That is,
m
i=1

λi cos(kti) =

m
i=1

λi sin(kti) = 0, 0 ≤ k < κ. (1)
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We call Λκ the class of such allowable measures. Clearly Λκ+1 ⊂ Λκ . In addition, for λ ∈ Λκ , the translated measure
ιtλ =

m
i=1 λiδ(ti + t), t ∈ S remains in Λκ . This can be easily seen from the elementary trigonometric identities (also

see Matheron, 1979; Chilès and Delfiner, 2012). For any function f (·) on S, we define f (λ) =
m

i=1 λif (ti).
In this paper,we consider a randomprocess {Z(t), t ∈ S} on a unit circlewith finite secondmoment and being continuous

in quadratic mean. By Yaglom (1961) and Roy (1972), the process can be expanded in a Fourier series which is convergent
in quadratic mean:

Z(t) = Z0 +

∞
n=1

(Zn,c cos nt + Zn,s sin nt), (2)

where Z0 = 1/(2π)

S Z(t)dt, Zn,c = (1/π)


S Z(t) cos ntdt , and Zn,s = (1/π)


S Z(t) sin ntdt .

Definition 2.1. For an integer κ(κ ≥ 0), the random process in (2) is called an IRFκ if for any λ ∈ Λκ , the process

Zλ(t) = Z(ιtλ) =

m
i=1

λiZ(ti + t)

is stationary with respect to t ∈ S and has a zero mean.

To characterize such a circular IRFκ , we denote

Zκ(t) =

∞
n=κ

(Zn,c cos nt + Zn,s sin nt),

as its low-frequency truncated process and so we have the following lemma.

Lemma 2.1. A random process given by (2) is an IRFκ if and only if its low-frequency truncated process Zκ(t) is stationary and
has a zero mean.

Proof. In the Fourier expansion (2), the lower trigonometric functions will be annihilated by λ ∈ Λκ , which implies

Z(ιtλ) =

∞
n=κ


Zn,c

m
i=1

(λi cos nti cos nt − λi sin nti sin nt) + Zn,s
m
i=1

(λi sin nti cos nt + λi cos nti sin nt)


.

Denote λn,c =
m

i=1 λi cos nti, λn,s =
m

i=1 λi sin nti and

Yn,c = Zn,cλn,c + Zn,sλn,s, Yn,s = −Zn,cλn,s + Zn,sλn,c, n = κ, κ + 1, . . . , (3)

we have

Z(ιtλ) =

∞
n=κ

(Yn,c cos nt + Yn,s sin nt).

Yaglom (1961, Theorem 5) shows that a random process (2) on the circle is stationary if and only if its Fourier coefficients
are uncorrelated random variables. The lemma can be directly obtained based on this and the linear mapping between the
coefficients of (Zn,c, Zn,s) and (Yn,c, Yn,s) in (3). �

Remark 2.1. In Euclidean spaces, the IRF is associated with differential operations (Matheron, 1973; Chilès and Delfiner,
2012). For example, a differentiable IRFκ on a real line is characterized as that its (κ +1) derivative is stationary. Lemma 2.1
indicates that for circular processes, the low-frequency truncation operation replaces differential operations and leads to
stationarity. This observation also has important implications for splines on the circle, which is addressed in Section 4.

Remark 2.2. It is clear that an IRF0 on the circle is the conventional stationary process. Note that this is slightly different
fromwhat has been defined in the Euclidean spaces, where IRF(−1) is usually a stationary process. For the rest of this paper,
we assume κ ≥ 1 for notational simplicity.

Remark 2.3. Based on Lemma 2.1, for an IRFκ process Z(t), the random process

Z∗(t) = Z(t) + A0 +

κ−1
n=1

(An,c cos nt + An,s sin nt),

where A0, An,c, An,s, n = 1, . . . , (κ − 1) are random variables, is clearly also an IRFκ . These two processes Z(t) and Z∗(t)
share the same truncation process Zκ(t), with Z∗(λ) = Z(λ), for any λ ∈ Λκ . Similar to the discussion in Chilès and Delfiner
(2012, Section 4.4.2), these functions form an equivalent class.
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