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a b s t r a c t

A nonparametric test of stationarity for independent data is investigated. The test is based
on comparing kernel density estimates calculated from subsamples of the data. Asymptotic
distribution theory is developed and results of a modest simulation study are presented.
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1. Introduction

A common problem in statistics is trying to determine whether or not data have a common distribution. This problem
arises in quality control, for example, where onewishes to be able to detect some change in a process. Suppose one observes
independent random variables X1, . . . , XN and wants to test whether or not they are stationary, i.e., whether or not they
have a common distribution. A number of methods exist for doing so. One class of methods falls under the heading ‘‘change-
point detection’’. These methods seek to identify an abrupt change in a sequence of observations. The cusum test proposed
by Page (1954) is a long-standing tool for detecting change-points. It is designed mainly for detecting level changes in the
observed process. Methods for detecting more general types of change, such as in variation or skewness, have also been
proposed. These include so-called randomness statistics (McDonald, 1991) and the stationarity tests of Kapetanios (2007),
Busetti and Harvey (2010) and Lima and Neri (2013).

The test of stationarity proposed in this paper is an adaptation of the test of Zhan and Hart (2014). Their test is for a
setting where one has a large number of small data sets and wishes to test whether all these data sets come from the same
distribution. In the current setting, onemay partition the N observations into, say, p smaller data sets of equal size, and then
apply the test of Zhan and Hart (2014) to these p sets. The statistic of Zhan and Hart (2014) is analogous to one proposed by
Lehmann (1951). Let F i be the empirical distribution function (edf) for the ith small data set, i = 1, . . . , p, and let FN be the
edf for all N observations. Then the statistic of Lehmann (1951) is

p
i=1


(F i(x) − FN(x))2 dFN(x). (1)

Lehmann (1951) and McDonald (1991) obtain the asymptotic distribution of (1) in the respective cases (a) N/p tends to ∞

with p fixed, and (b) p tends to ∞ with N/p fixed.
The statistic of Zhan andHart (2014) is an analog of (1) that compares kernel density estimates rather than edfs. A number

of authors, including Eubank et al. (1994), Martínez-Camblor and de Uña Álvarez (2009) and Rayner et al. (2009), have
made the case that goodness-of-fit tests based on density estimates are generally more powerful than ones based on edfs.
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The simulation study in Section 4 (of the current paper) suggests that a similar conclusion may be valid when testing for
stationarity.

The rest of the paper may be outlined as follows. The test statistic and its asymptotic distribution are described in
Section 2. Power properties against both fixed and local alternatives are developed in Section 3. A brief simulation study
illustrating the potential power gain over edf-based statistics is presented in Section 4. Finally, concluding remarks and
proofs of theoretical results are given in Section 5 and Appendix, respectively.

2. The test statistic and its null distribution

Let X = (X1, . . . , XN) be independent observations such that Xi has density fi, i = 1, . . . ,N . We wish to test the null
hypothesis

H0 : f1 ≡ f2 ≡ · · · ≡ fN (2)

against the negation of H0. Merely for the sake of notational simplicity, suppose that np = N for integers n > 1 and p. We
assume that n is fixed. Now divide the data set into p groups, the ith of which is

Xi = (Xn(i−1)+1, . . . , Xni), i = 1, . . . , p.

Having grouped the data in this way, we may now test H0 using methodology like that proposed in Zhan and Hart (2014).
The test of Zhan and Hart (2014) is, effectively, a comparison of the p data distributions defined by the above grouping.

In a completely arbitrary setting where the alternative hypothesis is true, such a comparison would not necessarily be very
powerful. However, the main application envisioned here is that the data are observed chronologically, and changes in
densities are such that the difference between fi and fj tends to be larger for large values of |i − j| than for smaller values of
|i − j|.

For a data set Y = (Y1, . . . , Yk), define the following kernel density estimate:

f̂h(x|Y ) =
1
kb

k
i=1

φ


x − Yi

b


,

where φ is the standard normal density and b is a positive bandwidth. Then our test statistic is a properly standardized
version of

p
i=1


∞

−∞

(f̂b(x|Xi) − f̂b(x|X))2 dx. (3)

To define the standardization, let

SW =
1

pn(n − 1)
√
2b

p
i=1

n
j=1

n
l=1,l≠j

φ


Xn(i−1)+j − Xn(i−1)+l

√
2b


,

SB =
1

p(p − 1)n2
√
2b

p
i=1

p
k=1,k≠i

n
j=1

n
l=1

φ


Xn(i−1)+j − Xn(k−1)+l

√
2b


.

The proposed test statistic is

Tb =

√
p(SW − SB)

σ̂
,

where σ̂ 2/p is an estimator (to be defined subsequently) of Var(SW − SB) assuming that H0 is true.
The reader is referred to Zhan and Hart (2014) for an explanation of why SW − SB is a centered version of (3). When

H0 is true, E(SW − SB) = 0, and under the ‘‘smooth’’ alternatives defined in Section 3 E(SW − SB) > 0. Furthermore, under
hypothesis (2) andwith n and b fixed, the results of Zhan andHart (2014) imply that Tb converges in distribution to a standard
normal random variable as N → ∞. The W and B on SW and SB stand for within and between, reflecting the fact that in SW
and SB the argument of φ depends upon two observations that come from the same and different groups, respectively. Our
test rejects H0 at level α if and only if Tb ≥ zα , where zα is the 1 − α percentile of the standard normal distribution.

To define the variance estimator σ̂ 2, let

h1(Xi) =
1

n(n − 1)
√
2b

n
j=1

n
l=1,l≠j

φ


Xn(i−1)+j − Xn(i−1)+l

√
2b


,

h2(Xi,Xk) =
1

n2
√
2b

n
j=1

n
l=1

φ


Xn(i−1)+j − Xn(k−1)+l

√
2b


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