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a b s t r a c t

Pitman closeness for Bayes shrinkage procedures in normal models are investigated. In
point estimation, priors in the Strawderman class dominate the uniformprior. In predictive
density estimation, spherically symmetric superharmonic priors dominate the uniform
prior under log loss.
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1. Introduction

Pitman (1937) proposed a criterion to compare point estimators based on the joint distribution of loss functions. Suppose
we have an observation X ∼ p(x | θ) and estimate the unknown parameter θ by some estimator θ̂ (x). An estimator θ̂1
dominates another estimator θ̂2 in the sense of Pitman under loss L(θ, θ̂) if

Prθ [L(θ, θ̂1(x)) < L(θ, θ̂2(x))] >
1
2

for every θ .
In this study, we apply the Pitman closeness criterion to compare estimators of predictive densities. Suppose that we

have an observation X ∼ p(X | θ) and predict the future observation Y ∼ p(Y | θ) by a predictive density p̂(Y | X). The
plug-in predictive density with an estimator θ̂ (X) is defined as

p̂plug-in(Y | X) =p(Y | θ̂ (X)).
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The Bayesian predictive density based on a prior π(θ) is defined as

p̂π (Y | X) =

 p(Y | θ)π(θ | X)dθ =

 p(Y | θ)p(X | θ)π(θ)dθ
p(X | θ)π(θ)dθ

.

Aitchison (1975) showed that Bayesian predictive densities are preferable under Kullback–Leibler risk comparison. We
compare Pitman closeness of predictive density estimators under two different losses. The first comparison is based on
the joint distribution of the Kullback–Leibler loss

D(p(y | θ), p̂(y | x)) =


p(y | θ) log

p(y | θ)

p̂(y | x)
dy. (1)

Definition 1. p̂1(y | x) dominates p̂2(y | x) in the sense of Pitman under Kullback–Leibler loss if

Prθ [D(p(y | θ), p̂1(y | x)) < D(p(y | θ), p̂2(y | x))] >
1
2

for every θ .

Note that the difference of Kullback–Leibler loss for p̂1(y | x) and p̂2(y | x) is

D(p(y | θ), p̂1(y | x)) − D(p(y | θ), p̂2(y | x))

=


p(y | θ)(− log p̂1(y | x))dy −


p(y | θ)(− log p̂2(y | x))dy.

Therefore, Kullback–Leibler loss is essentially the same as the expectation of − log p̂(y | x) with respect to y ∼ p(y | θ).
The second comparison is based on the joint distribution of the log loss

− log p̂(y | x). (2)

Here, we consider the distribution of log loss not averaged over y.

Definition 2. p̂1(y | x) dominates p̂2(y | x) in the sense of Pitman under log loss if

Prθ [− log p̂1(y | x)) < − log p̂2(y | x))] >
1
2

for every θ .

See Grünwald and Dawid (2004) for a discussion of the applicability of log loss to data compression. Whereas the
Kullback–Leibler loss concerns the quality of prediction averaged over y, the log loss involves each y individually. In other
words, comparisons in terms of log loss are based on the joint distribution of X and Y .

We note that Matsuda and Strawderman (2016) also studied Pitman closeness properties of predictive densities in
the context of univariate normal distributions with nonnegative mean. In this paper, we investigate multivariate normal
distributions with unrestricted mean.

In this study, we consider the estimation and prediction in p dimensional normal models. In Section 2, we compare plug-
in predictive densities and Bayesian predictive densities based on the uniform prior. In Section 3, after providing Pitman
closeness properties of Bayes shrinkage point estimators, we compare Bayesian predictive densities based on spherically
symmetric superharmonic priors, including the Stein prior (Stein, 1974), and those based on the uniform prior.

2. Plug-in predictive density and Bayesian predictive density based on the uniform prior

In this section, we compare the Bayesian predictive density based on the uniform prior and the standard plug-in
predictive density.

Suppose that we have an observation X ∼ Np(θ, σ 2I) and predict the future observation Y ∼ Np(θ, τ 2I) by a predictive
density p̂(Y | X). Here, we assume that X and Y are independent conditionally on θ , and σ 2 and τ 2 are known. The plug-in
predictive density with the maximum likelihood estimator and the Bayesian predictive density with respect to the uniform
prior are defined as

p̂plug-in(y | x) = Np(x, τ 2I),

p̂I(y | x) = Np(x, (σ 2
+ τ 2)I).

Aitchison (1975) showed that p̂I dominates p̂ plug-in under Kullback–Leibler risk. In this section, we show that this domination
does not necessarily hold under Pitman closeness criterion. Indeed, Pitman closeness comparisons under Kullback–Leibler
loss may favor either p̂plug-in or p̂I depending on the dimension p and the ratio τ 2/σ 2. We denote the α quantile of the
chi-squared distribution with p degrees of freedom as χ2

p (α).
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