Cramér type moderate deviations for the number of renewals ${ }^{\text {T}}$

Zi Ye
School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China

ARTICLE INFO

Article history:

Received 18 March 2015
Received in revised form 11 July 2016
Accepted 21 July 2016
Available online 27 July 2016

MSC:

60F10
60K05

Keywords:

Renewal process
Cramér condition
Moderate deviation

Abstract

For the renewal process whose life-length variables are independent and identically distributed and satisfying the Cramér condition, we establish a moderate deviation estimation for it.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Renewal process is an important kind of stochastic processes and it can be used to analyze many real problems such as predicting traffic flows, estimating the risk of earthquakes and so on. Having a better understanding of the process facilitates us to solve these problems.

We have known some asymptotic properties of the process. Billingsley (1968) has proven that renewal process is asymptotically normally distributed. Gunnar (1980) exhibited a remainder term estimate for the approximation. His result plays an important role in the proof of our result, we will illustrate it in detail later.

Moderate deviations date back to Cramér (1938) who obtained expansions for tail probabilities for sums of independent random variables. Petrov (1975) presented many asymptotic relations connected with Cramér series. In this paper, we establish a Carmér type moderate deviation for the renewal process.

2. Main result

Before stating the main result of the paper, we introduce the fundamental notations used in the paper. Let $\left\{X_{i}, i=1,2, \ldots\right\}$ be independent and identically distributed non-negative random variables with

$$
\begin{equation*}
\mu=E X_{1}, \quad \sigma^{2}=D^{2} X_{1}, \quad \gamma^{3}=E\left|X_{1}-\mu\right|^{3} \tag{1}
\end{equation*}
$$

[^0]where μ, σ and γ are finite constants. In the paper, we focus on renewal process $N(t)$ which is the number of renewals during the time interval [$0, t$], i.e.
\[

$$
\begin{equation*}
N(t)=\max \left\{n: \sum_{j=1}^{n} X_{j} \leq t\right\}, \quad t \geq 0 \tag{2}
\end{equation*}
$$

\]

Φ denotes the standard normal distribution function.
Our main result is the following theorem.
Theorem 1. Assume that X_{1} satisfies the Cramér condition, namely, there exists $t_{1}>0$ such that $E e^{t_{1}\left|X_{1}\right|} \leq C<\infty$. Then for any fixed positive constant c_{0} and for any fixed t

$$
\begin{equation*}
\frac{P\left(\frac{N(t)-\frac{t}{\mu}}{\sigma \sqrt{t / \mu^{3}}} \geq x\right)}{1-\Phi(x)}=1+O(1) \frac{1+x^{3}}{\sqrt{t}} \tag{3}
\end{equation*}
$$

holds uniformly for $0<x \leq c_{0} t^{1 / 6}$.
To conclude with the section, we introduce some important results that are used to prove the theorem. The first theorem is provided by Gunnar (1980), and we state his result as below.

Theorem 2.1. With notations as above we have for $t \geq 0$

$$
\begin{equation*}
\sup _{n}\left|P(N(t)<n)-\Phi\left(\frac{(n \mu-t) \sqrt{\mu}}{\sigma \sqrt{t}}\right)\right| \leq 4\left(\frac{\gamma}{\sigma}\right)^{3} \frac{\sqrt{\mu}}{\sqrt{t}} . \tag{4}
\end{equation*}
$$

Note that if a random variable X satisfies the Cramér condition that the moment-generating function of X exists, then its moments of all orders exist. Thus by Taylor expansions and Petrov's (1975, Chapter 8, equation (2.41) and (2.42)) result, we can deduce the following theorem.

Theorem 2.2. Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables with $E X_{1}=0$ and $\operatorname{Var}\left(X_{1}\right)=1$ such that $E e^{t_{0}\left|X_{1}\right|} \leq C<\infty$ for some $t_{0}>0$, then for $0 \leq x \leq a_{0} n^{1 / 6}$, we have

$$
\begin{equation*}
\frac{P\left(W_{n} \leq-x\right)}{1-\Phi(x)}=1+O(1) \frac{1+x^{3}}{\sqrt{n}} \tag{5}
\end{equation*}
$$

where $W_{n}=\left(X_{1}+\cdots+X_{n}\right) / \sqrt{n}$, a_{0} is any fixed positive constant and $O(1)$ is bounded by a constant depending on C and t_{0}.

3. Proof of Theorem 1

First of all, fix a positive constant c_{0}, we suppose that $0 \leq x \leq c_{0} t^{\frac{1}{6}}$. In the beginning, we reduce the problem by showing that Eq. (3) is almost trivial for $0<t \leq M=\max \left\{2,2 \mu, \frac{2 \mu^{3}}{\sigma^{2}}+\mu\right\}$. In this case, for every fixed $c_{0}>0,0 \leq x \leq c_{0} M^{\frac{1}{6}}$. The left part of (3) is bounded by a constant depending on c_{0} and μ, since

$$
\frac{P\left(\frac{N(t)-\frac{t}{\mu}}{\sigma \sqrt{t / \mu^{3}}} \geq x\right)}{1-\Phi(x)} \leq \frac{1}{1-\Phi(x)} \leq \frac{1}{1-\Phi\left(c_{0} M^{\frac{1}{6}}\right)}, \quad \frac{1}{\sqrt{M}} \leq \frac{1+x^{3}}{\sqrt{t}}
$$

Obviously, Eq. (3) holds. Now we divide the problem into two cases according to the range of x. In the first case, we suppose that $0 \leq x \leq \frac{\mu^{\frac{3}{2}}}{\sigma \sqrt{t}}$, and in the second case $\frac{\mu^{\frac{3}{2}}}{\sigma \sqrt{t}} \leq x \leq c_{0} t^{\frac{1}{6}}$. To simplify the presentations, we let A be $\frac{\mu^{\frac{3}{2}}}{\sigma}$. The discussion is relatively easy in the first case and we can get the result directly.

We set $n(t, x)$ as the integer part of $x \sigma \sqrt{\frac{t}{\mu^{3}}}+\frac{t}{\mu}$ and let δ be the decimal part of $x \sigma \sqrt{\frac{t}{\mu^{3}}}+\frac{t}{\mu}$, namely

$$
\begin{equation*}
n(t, x)=\left[x \sigma \sqrt{\frac{t}{\mu^{3}}}+\frac{t}{\mu}\right]=x \sigma \sqrt{\frac{t}{\mu^{3}}}+\frac{t}{\mu}-\delta . \tag{6}
\end{equation*}
$$

Notice that $N(t)$ can only be integer, we have

$$
\begin{equation*}
P\left(\frac{N(t)-\frac{t}{\mu}}{\sigma \sqrt{t / \mu^{3}}} \geq x\right)=P\left(N(t) \geq x \sigma \sqrt{\frac{t}{\mu^{3}}}+\frac{t}{\mu}\right)=P(N(t) \geq n(t, x)) . \tag{7}
\end{equation*}
$$

https://daneshyari.com/en/article/1151476

Download Persian Version:
https://daneshyari.com/article/1151476

Daneshyari.com

[^0]: th This paper is supported by the National Natural Science Foundation of China (Grant No. 11171262) and Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2013014110076).

 E-mail address: ziye@whu.edu.cn.

