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a b s t r a c t

We derive two-sided bounds for moments of randommulti-linear forms (random chaoses)
with nonnegative coefficients generated by independent nonnegative random variables Xi
which satisfy the following condition on the growth of moments: ∥Xi∥2p ≤ A∥Xi∥p for any i
and p ≥ 1. The estimates are deterministic and exact up to multiplicative constants which
depend only on the order of chaos and the constant A in the moment assumption.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study homogeneous tetrahedral chaoses of order d, i.e. random variables of the form

S =


1≤i1,...,id≤n

ai1,...,idXi1 · · · · · Xid ,

where X1, . . . , Xn are independent random variables and (ai1,...,id) is a multi-indexed symmetric array of real numbers such
that ai1,...,id = 0 if il = im for somem ≠ l,m, l ≤ d.

Chaoses of order d = 1 are just sums of independent random variables the object quite well understood. Latała (1997)
derived two-sided bounds for ∥


aiXi∥p under general assumptions that either ai, Xi are nonnegative or Xi are symmetric.

The case d ≥ 2 is much less understood. There are papers presenting two-sided bounds for moments of S in special
cases when (Xi) have normal distribution (Latała, 2006), have logarithmically concave tails (Adamczak and Latała, 2012)
or logarithmically convex tails (Kolesko and Latała, 2015).

The purpose of this note is to derive two-sided bounds for ∥S∥p if coefficients (ai1,...,id) are nonnegative and (Xi) are
independent, nonnegative and satisfy the following moment condition for some k ∈ N,

∥Xi∥2p ≤ 2k
∥Xi∥p for every p ≥ 1. (1)

The main idea is that if a r.v. Xi satisfy (1) then it is comparable with a product of k i.i.d. variables with logarithmically
concave tails. In this way the problem reduces to the result of Latała and Łochowski (2003) which gives two-sided bounds
for moments of nonnegative chaoses generated by r.v’s with logarithmically concave tails.
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2. Notation and main results

We set ∥Y∥p = (E|Y |
p)1/p for a real r.v. Y and p ≥ 1, log(x) = log2(x) and ln stands for the natural logarithm. By C, t0

(sometimes C(k, d), t0(k, d)) we denote constants that may depend on k, d andmay vary from line to line. Wewrite A∼k,d B
if A · C(k, d) ≥ B and B · C(k, d) ≥ A.

Let {X (1)
i }, . . . , {X (d)

i } be independent r.v’s. We set

N (r)
i (t) = − ln P(X (r)

i ≥ t).

We say that X (r)
i has logarithmically concave tails if the function N (r)

i is convex. We put

B(r)
p =


v ∈ Rn

|

n
i=1

N (r)
i (vi) ≤ p


and

∥(ai1,...,id)∥p = sup

 
1≤i1,...,id≤n

ai1,...,id
d

r=1


1 + v

(r)
ir


|


v

(r)
i


∈ B(r)

p


.

We will show the following.

Theorem 2.1. Let (X (r)
i )r≤d,i≤n be independent non-negative random variables satisfying (1) and EX (r)

i = 1. Then for any non-
negative coefficients (ai1,...,id)i1,...,id≤n we obtain

1
C(k, d)

∥(ai1,...,id)∥p ≤

 
1≤i1,...,id≤n

ai1,...,idX
(1)
i1

· · · · · X (d)
id


p

≤ C(k, d)∥(ai1,...,id)∥p.

Theorem 2.1 in the same way as the proof of Theorem 2.2 in Latała and Łochowski (2003) yields the following two-sided
bounds for tails of random chaoses.

Theorem 2.2. Under the assumptions of Theorem 2.1 there exist constants 0 < c(k, d), C(k, d) < ∞ depending only on d and
k such that for any t ≥ 0 we have

P

 
1≤i1,...,id≤n

ai1,...,idX
(1)
i1

· · · · · X (d)
id

≥ C(k, d)∥(ai1,...,id)∥p


≤ e−p

and

P

 
1≤i1,...,id≤n

ai1,...,idX
(1)
i1

· · · · · X (d)
id

≥ c(k, d)∥(ai1,...,id)∥p


≥ min(c(k, d), e−p).

Now we are ready to present two-sided bounds for decoupled chaoses. We define in this case Ni(t) = − ln P(Xi ≥ t),

Bp =


v ∈ Rn

|

n
i=1

Ni(vi) ≤ p


and

∥(ai1,...,id)∥
′

p = sup

 
1≤i1,...,id≤n

ai1,...,id
d

r=1


1 + v

(r)
ir


|


v

(r)
i


∈ Bp


.

Theorem 2.3. Let (Xi)i≤n be nonnegative independent r.v’s satisfying (1) and EXi = 1. Then for any symmetric array of nonneg-
ative coefficients (ai1,...,id)i1,...,id≤n such that

ai1,...,id = 0 if il = im for some m ≠ l, m, l ≤ d (2)

we get

1
C(k, d)

∥(ai1,...,id)∥
′

p ≤

 
1≤i1,...,id≤n

ai1,...,idXi1 · · · · · Xid


p

≤ C(k, d)∥(ai1,...,id)∥
′

p.
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