Two-sided moment estimates for a class of nonnegative chaoses

Rafał Meller ${ }^{1}$
Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

A R TICLE INFO

Article history:
Received 1 July 2016
Accepted 11 August 2016
Available online 18 August 2016

MSC:

60 E 15

Keywords:

Polynomial chaoses
Tail and moment estimates
Logarithmically concave tails

Abstract

We derive two-sided bounds for moments of random multi-linear forms (random chaoses) with nonnegative coefficients generated by independent nonnegative random variables X_{i} which satisfy the following condition on the growth of moments: $\left\|X_{i}\right\|_{2 p} \leq A\left\|X_{i}\right\|_{p}$ for any i and $p \geq 1$. The estimates are deterministic and exact up to multiplicative constants which depend only on the order of chaos and the constant A in the moment assumption.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study homogeneous tetrahedral chaoses of order d, i.e. random variables of the form

$$
S=\sum_{1 \leq i_{1}, \ldots, i_{d} \leq n} a_{i_{1}, \ldots, i_{d}} X_{i_{1}} \cdots \cdots X_{i_{d}}
$$

where X_{1}, \ldots, X_{n} are independent random variables and $\left(a_{i_{1}}, \ldots, i_{d}\right)$ is a multi-indexed symmetric array of real numbers such that $a_{i_{1}, \ldots, i_{d}}=0$ if $i_{l}=i_{m}$ for some $m \neq l, m, l \leq d$.

Chaoses of order $d=1$ are just sums of independent random variables the object quite well understood. Latała (1997) derived two-sided bounds for $\left\|\sum a_{i} X_{i}\right\|_{p}$ under general assumptions that either a_{i}, X_{i} are nonnegative or X_{i} are symmetric. The case $d \geq 2$ is much less understood. There are papers presenting two-sided bounds for moments of S in special cases when $\left(X_{i}\right)$ have normal distribution (Latała, 2006), have logarithmically concave tails (Adamczak and Latała, 2012) or logarithmically convex tails (Kolesko and Latała, 2015).

The purpose of this note is to derive two-sided bounds for $\|S\|_{p}$ if coefficients $\left(a_{i_{1}, \ldots, i_{d}}\right)$ are nonnegative and $\left(X_{i}\right)$ are independent, nonnegative and satisfy the following moment condition for some $k \in \mathbb{N}$,

$$
\begin{equation*}
\left\|X_{i}\right\|_{2 p} \leq 2^{k}\left\|X_{i}\right\|_{p} \quad \text { for every } p \geq 1 \tag{1}
\end{equation*}
$$

The main idea is that if a r.v. X_{i} satisfy (1) then it is comparable with a product of k i.i.d. variables with logarithmically concave tails. In this way the problem reduces to the result of Latała and Łochowski (2003) which gives two-sided bounds for moments of nonnegative chaoses generated by r.v's with logarithmically concave tails.

[^0]
2. Notation and main results

We set $\|Y\|_{p}=\left(\mathbb{E}|Y|^{p}\right)^{1 / p}$ for a real r.v. Y and $p \geq 1, \log (x)=\log _{2}(x)$ and \ln stands for the natural logarithm. By C, t_{0} (sometimes $\left.C(k, d), t_{0}(k, d)\right)$ we denote constants that may depend on k, d and may vary from line to line. We write $A \sim_{k, d} B$ if $A \cdot C(k, d) \geq B$ and $B \cdot C(k, d) \geq A$.

Let $\left\{X_{i}^{(1)}\right\}, \ldots,\left\{X_{i}^{(d)}\right\}$ be independent r.v's. We set

$$
N_{i}^{(r)}(t)=-\ln \mathbb{P}\left(X_{i}^{(r)} \geq t\right)
$$

We say that $X_{i}^{(r)}$ has logarithmically concave tails if the function $N_{i}^{(r)}$ is convex. We put

$$
B_{p}^{(r)}=\left\{v \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} N_{i}^{(r)}\left(v_{i}\right) \leq p\right\}
$$

and

$$
\left\|\left(a_{i_{1}, \ldots, i_{d}}\right)\right\|_{p}=\sup \left\{\sum_{1 \leq i_{1}, \ldots, i_{d} \leq n} a_{i_{1}, \ldots, i_{d}} \prod_{r=1}^{d}\left(1+v_{i_{r}}^{(r)}\right) \mid\left(v_{i}^{(r)}\right) \in B_{p}^{(r)}\right\} .
$$

We will show the following.
Theorem 2.1. Let $\left(X_{i}^{(r)}\right)_{r \leq d, i \leq n}$ be independent non-negative random variables satisfying (1) and $\mathbb{E} X_{i}^{(r)}=1$. Then for any nonnegative coefficients $\left.\left(a_{i_{1}, \ldots, i_{d}}\right)\right)_{1}, \ldots, i_{d} \leq n$ we obtain

$$
\frac{1}{C(k, d)}\left\|\left(a_{i_{1}, \ldots, i_{d}}\right)\right\|_{p} \leq\left\|\sum_{1 \leq i_{1}, \ldots, i_{d} \leq n} a_{i_{1}, \ldots, i_{d}} X_{i_{1}}^{(1)} \cdots \cdots X_{i_{d}}^{(d)}\right\|_{p} \leq C(k, d)\left\|\left(a_{i_{1}, \ldots, i_{d}}\right)\right\|_{p}
$$

Theorem 2.1 in the same way as the proof of Theorem 2.2 in Latała and Łochowski (2003) yields the following two-sided bounds for tails of random chaoses.

Theorem 2.2. Under the assumptions of Theorem 2.1 there exist constants $0<c(k, d), C(k, d)<\infty$ depending only on d and k such that for any $t \geq 0$ we have

$$
\mathbb{P}\left(\sum_{1 \leq i_{1}, \ldots, i_{d} \leq n} a_{i_{1}, \ldots, i_{d}} X_{i_{1}}^{(1)} \cdots X_{i_{d}}^{(d)} \geq C(k, d)\left\|\left(a_{i_{1}, \ldots, i_{d}}\right)\right\|_{p}\right) \leq e^{-p}
$$

and

$$
\mathbb{P}\left(\sum_{1 \leq i_{1}, \ldots, i_{d} \leq n} a_{i_{1}, \ldots, i_{d}} X_{i_{1}}^{(1)} \cdots X_{i_{d}}^{(d)} \geq c(k, d)\left\|\left(a_{i_{1}, \ldots, i_{d}}\right)\right\|_{p}\right) \geq \min \left(c(k, d), e^{-p}\right)
$$

Now we are ready to present two-sided bounds for decoupled chaoses. We define in this case $N_{i}(t)=-\ln \mathbb{P}\left(X_{i} \geq t\right)$,

$$
B_{p}=\left\{v \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} N_{i}\left(v_{i}\right) \leq p\right\}
$$

and

$$
\left\|\left(a_{i_{1}, \ldots, i_{d}}\right)\right\|_{p}^{\prime}=\sup \left\{\sum_{1 \leq i_{1}, \ldots, i_{d} \leq n} a_{i_{1}, \ldots, i_{d}} \prod_{r=1}^{d}\left(1+v_{i_{r}}^{(r)}\right) \mid\left(v_{i}^{(r)}\right) \in B_{p}\right\}
$$

Theorem 2.3. Let $\left(X_{i}\right)_{i \leq n}$ be nonnegative independent r.v's satisfying (1) and $\mathbb{E} X_{i}=1$. Then for any symmetric array of nonnegative coefficients $\left(a_{i_{1}}, \ldots, i_{d}\right)_{i_{1}, \ldots, i_{d} \leq n}$ such that

$$
\begin{equation*}
a_{i_{1}, \ldots, i_{d}}=0 \quad \text { if } i_{l}=i_{m} \text { for some } m \neq l, m, l \leq d \tag{2}
\end{equation*}
$$

we get

$$
\frac{1}{C(k, d)}\left\|\left(a_{i_{1}, \ldots, i_{d}}\right)\right\|_{p}^{\prime} \leq\left\|\sum_{1 \leq i_{1}, \ldots, i_{d} \leq n} a_{i_{1}, \ldots, i_{d}} X_{i_{1}} \cdots X_{i_{d}}\right\|_{p} \leq C(k, d)\left\|\left(a_{i_{1}, \ldots, i_{d}}\right)\right\|_{p}^{\prime}
$$

https://daneshyari.com/en/article/1151479

Download Persian Version:
https://daneshyari.com/article/1151479

Daneshyari.com

[^0]: E-mail address: r.meller@mimuw.edu.pl.
 1 The author was supported by the National Science Centre, Poland grant 2015/18/A/ST1/00553.
 http://dx.doi.org/10.1016/j.spl.2016.08.005
 0167-7152/© 2016 Elsevier B.V. All rights reserved.

