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a b s t r a c t

Estimation of normal mean vector has broad applications such as small area estimation,
estimation of nonparametric functions and estimation of wavelet coefficients. In this
paper, we propose a new shrinkage estimator based on conditional maximum likelihood
estimator incorporating with Stein’s risk unbiased estimator (SURE) when data have the
normality. We present some theoretical work and provide numerical studies to compare
with some existing methods.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let z = (z1, . . . , zn) be a vector of observations generated independently from zi = θi + ϵi, i = 1, 2, . . . , n where
ϵi ∼ N(0, σ 2). Our interest is to obtain an estimate of θ = (θ1, . . . , θn), say θ̂ = (θ̂1, . . . , θ̂n), with small L2 risk
R(θ) =

k
i=1 E(θ̂i − θi)

2. In particular, when the solutions are sparse in that the number of nonzero θ ’s is small compared
to n, a variety of shrinkage estimators have been developed, for example, see Donoho and Johnstone (1994), Donoho and
Johnstone (1995), and Johnstone and Silverman (2004). The sparsity situation occurs commonly inmany practical problems,
for example, the estimation of wavelet coefficients which is also known as wavelet denoising. Under the sparsity, these
literatures discussed the use of different types of shrinkage such as hard shrinkage and soft shrinkage. These two shrinkage
estimators are the most typical examples when only a small proportion of θi is non-zero. The hard and soft shrinkage have
some drawbacks in practice, for example, hard shrinkage has discontinuity in estimator causing a large variability and the
soft shrinkage has large bias. Johnstone and Silverman (2004) proposed the empirical Bayes (EB) approach with different
prior distributions on θ which has the form of mixture of point mass at 0 and the nonzero part.

In this paper, we propose an adaptive andmodel-based shrinkage estimator of which the form reflect the normality. This
will be implemented based on conditional maximum likelihood estimate (CMLE) conditioning on observations greater or
smaller than some cut-off value. Our proposed CMLE is also expected to overcome drawbacks of hard and soft thresholding
such as discontinuity of hard thresholding and large bias of soft thresholding. We incorporate the idea of SURE (Stein’s
Unbiased Risk Estimate) to determine the parameter in the proposed shrinkage estimator as in the case of soft shrinkage
estimator with SURE. However it will be seen that our proposed CMLE with SURE performs better than the soft shrinkage
with SURE. Our proposed CMLE is a fully data-dependent procedure whereas the EB approach in Johnstone and Silverman
(2004) needs to specify the prior distribution. We also provide some optimal property of the proposed CMLE as Donoho and
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Fig. 1. The left panel in the first row shows θ̂CMLE conditioning on Zj > 1 or Zj < −1 and the right panel shows θ̂ by modifying θ̂CMLE .

Johnstone (1994) did for hard and soft shrinkage and present numerical studies showing that our proposed CMLE obtains
at least competitive or better performances than EB as well as hard and soft shrinkages.

This paper is organized as follows. In Section 2, we introduce our proposed CMLE and present some property to
reduce computation. Section 3 provides some discussion on the Stein’s risk unbiased estimate to determine the shrinkage
parameter. In Section 4, numerical studies are presented to compare the CMLE and some other methods. We present
concluding remarks in Section 5.

2. Conditional maximum likelihood estimate

In this section, we propose an estimator of θ based on conditional MLE. The conditional densities of Zj given Zj > C and
Zj < −C are
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We consider the CMLE conditioning on either Zj > C or Zj < −C , namely θ̂CMLE
j which is

θ̂CMLE
j =


argmaxθj
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argmaxθj
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 if zj < −C .

However, as shown in the left graphs in Fig. 1 for C = 1, this θ̂CMLE has negative (positive) estimators even when
Zj > 0 (Zj < 0), respectively. In order to avoid this property and to obtain continuity, we modify the θ̂CMLE further to
have our proposed estimator, namely θ̂ , as follows:

θ̂j ≡ θ̂ (Zj) =


max(θ̂CMLE

j , 0) if Zj > 0

min(θ̂CMLE
j , 0) otherwise.

As shown from two right graphs in Fig. 1, θ̂ from θ̂CMLE is smooth (in the sense of weakly differentiable).
We see that θ̂j’s have the sparse solution in that we have 0 estimators for relatively small observation Zjs. Furthermore, as

mentioned, the estimator has the continuity sowe can apply the idea of SURE to determine the parameter C .Wedemonstrate
this estimation of C in the next section.

By symmetry, we only need to consider the case of Zj > C since the other case can be done easily. Given an observation
Zj > C and σ , the θ̂CMLE

j is the solution of

Zj = θj + σ · h

C − θj

σ


(2)
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