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a b s t r a c t

In this article we demonstrate the relationship between finitely exchangeable arrays and
finitely exchangeable sequences. We then derive sharp bounds on the total variation dis-
tance between distributions of finitely and infinitely exchangeable arrays.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of invariance properties of probability distributions has long been the focus of statisticians and probabilists
(DeMoivre, 1756; de Laplace, 1820; De Finetti, 1931; Hewitt and Savage, 1955; Aldous, 1985; Austin and Panchenko, 2013).
Themost common type of invariance is the notion of independent and identically distributed distributions. It is fundamental
for classical results such as theweak and strong laws of large numbers and central limit theorems. Relaxation of the statistical
notion of independence in this definition to simply requiring that the order of a sequence of randomvariables does not affect
their joint distribution gives rise to the notion of exchangeable random variable sequences. These variables are marginally
identically distributed but they can exhibit different forms of dependence. Infinite exchangeability of a sequence of random
variables is in turn related back to independent and identically distributed random variable sequences via a famous theorem
due to De Finetti (1931, 1972). Considering an infinitely exchangeable sequence X1, X2, . . . of binary random variables the
theorem states that there is a unique probability measure µ such that for all n ≥ 1

Pr(X1 = e1, . . . , Xn = en) =


p


ei(1 − p)n−


eidµ(p). (1)

Generalizations of this famous theorem to higher dimensional arrays were given independently by Hoover (1989) and
Aldous (1981): For example consider an infinitely row–column weakly exchangeable binary matrix X . The distribution of
such a matrix is invariant under the permutation of the row and column indices of the matrix by the same permutation.
Intuitively, such a matrix can represent relational data, where the shared index set of the rows and columns represents
an actor, while the entries of the matrix represent the existence of a relationship among the actors. The Aldous–Hoover
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representation for this matrix is

Xij = 1[W (Ui,Uj) ≥ λij],

where Ui and λij are independent uniform (0, 1) random variables and W is a measurable symmetric function from
[0, 1]2 → [0, 1]. Intuitively, the Ui can be interpreted as actor attributes while the λij as pairwise attributes.

These results have served as foundation for many Bayesian methods. For example, proofs of the consistency of Bayesian
procedures rely on the assumption that the data is infinitely exchangeable, that is conditionally i.i.d. (Berk, 1970). Similarly,
the analysis of relational data heavily relies on the Aldous–Hoover representation for arrays (Hoff et al., 2002). The power
of these results is derived from the assumption that the index set of the array is infinite. Specifically, it is well known that
de Finetti’s theorem does not hold for finitely exchangeable sequences (Diaconis, 1977; Diaconis and Freedman, 1980).
A similar result has been known, though apparently not written down, for the failure of the Aldous–Hoover representation
to hold for finitely row–column exchangeable arrays. Consider the following distribution on 2× 2 binary matrices: P(x11 =

x22 = 0) = 1, P(x12 = x21) = 0 and P(x12 = 1) = P(x21 = 1) = 1/2. This is clearly a jointly row–column exchangeable
distribution but an Aldous–Hoover representation would require:

0 = P(x12 = 0, x21 = 0) =


(1 − p)2dµ(p)

0 = P(x12 = 1, x21 = 1) =


p2dµ(p)

for µ a mixing measure as in the de Finetti representation in Eq. (1).
Notions of finite invariance described above have received a lot of attention in the case of sequences, but much less

so for networks and general arrays. Specifically, our work is motivated by the pervasiveness of the assumption of joint
row–column exchangeability throughout the field of network analysis (Holland et al., 1983; Hoff et al., 2002; Diaconis and
Janson, 2007; Airoldi et al., 2009, 2013; Bickel and Chen, 2009).While certain network data have the potential representation
as a sample from an infinite population, it is very common to observe the whole finite network such as in the study of trade
between countries (Volfovsky and Hoff, 2015), friendship networks among students in the same class (Hoff et al., 2013)
and interactions among monks in a monastery (Sampson, 1969). In these cases an assumption of exchangeability of the
nodes is still desirable as there is no information in the individual labels, but the assumption of infinite exchangeability is
inappropriate since there is no infinite network the data could have been sampled from.

This article is motivated by these finitely exchangeable network scenarios and is not intended as a review of infinite
exchangeability. A comprehensive overviewof the assumptions and representations of infinite exchangeability for networks
and general arrays is available in Orbanz and Roy (2013). In the next section we derive sharp bounds on the total variation
distance between finitely exchangeable network distributions and their infinitely exchangeable extensions. This is done by
relating the distribution of the singular value decomposition of a relationalmatrix to the distribution of finitely exchangeable
sequences. Section 3 extends these results to general k dimensional arrays where each dimension is independently
exchangeable. To arrive at this result we extend the results of Freedman (1977) to bounds on the total variation distance
between sampling with and without replacement from multiple urns. The desire for an exact bound was posed as open
problem 15.10 by Aldous (1985, p.137). In the Discussion we provide an explicit statement of a representation theorem
for distributions that are invariant under the operations of a finite group G. This representation can be used to compute a
G-invariant non-parametric maximum likelihood estimate of a distribution as well as for the construction of test statistics
for the infinite exchangeability of a distribution.

2. Sharp total variation bounds for networks

In this section we derive bounds for the total variation distance between the distributions of finitely and infinitely
exchangeable networks. This quantitative summary provides insight into the efficacy of the assumption of infinite exchange-
ability. By taking limits of the bounds in the number of nodes in the network we recover the classical Aldous–Hoover rep-
resentation. Recall that a distribution of a network with m nodes is exchangeable, that is its representation as a square
relational data matrix X is jointly row–column exchangeable, if for all g ∈ Sm(=symmetric group) we have Pr(gX = A) =

Pr(X = A) where g acts on the rows and columns of X simultaneously. The results of Aldous (1981) and Hoover (1979)
provide a representation theorem for infinitely exchangeable networks in the spirit of de Finetti’s theorem for infinitely
exchangeable sequences: If (Xij)

∞,∞
1,1 is an infinitely exchangeable network then it can be written as Xij = f (α, ui, uj, λij)

for a measurable function f that is symmetric in its middle arguments and α, ui, λij all independent uniform (0, 1). This is
explicitly called joint or weak exchangeability. This representation is frequently usedwhen describing relational data where
the object of interest is a square array X .

It is natural to ask how close the finitely exchangeable distributions are to the Aldous–Hoover representation of an
infinitely row–column exchangeable array. The example of the failure of the Aldous–Hoover representation for jointly
exchangeable arrays is similar in spirit to the classical example provided by Diaconis (1977) for the failure of the de Finetti’s
theorem for a finite sequence. We first present the sharp total variation bound for finitely exchangeable sequences found in
Diaconis and Freedman (1980) and then employ a singular value decomposition to extend the result to networks.
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