Deconvolution of a discrete uniform distribution

Anatoly Zhigljavsky ${ }^{\text {a,b,* }}$, Nina Golyandina ${ }^{\text {c }}$, Svyatoslav Gryaznov ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Mathematics, Cardiff University, CF24 4AG, UK
${ }^{\mathrm{b}}$ Lobachevskii Nizhnii Novgorod State University, Russia
${ }^{\text {c }}$ St.Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia

ARTICLE INFO

Article history:

Received 28 March 2016
Received in revised form 9 June 2016
Accepted 9 June 2016
Available online 16 June 2016

Keywords:

Deconvolution
Discrete uniform
Cyclotomic polynomial
Roots of unity

Abstract

Let ξ be a discrete random variable (r.v.) with uniform distribution on the support set $\{0,1, \ldots, N\}$. We study the problem of construction of non-degenerate independent r.v.'s ξ_{1} and ξ_{2} such that $\xi=\xi_{1}+\xi_{2}$, if these r.v.'s exist. We describe a general form for the solutions to this problem, offer some analytic constructions and develop algorithms for computing the distributions of ξ_{1} and ξ_{2}.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let ξ be a discrete r.v. with uniform distribution on the support set $\{0,1, \ldots, N\}$, where $N>1$ is given. We investigate the problem of existence of non-degenerate independent r.v.'s ξ_{1} and ξ_{2} such that

$$
\begin{equation*}
\xi=\xi_{1}+\xi_{2} \tag{1}
\end{equation*}
$$

and develop general schemes for construction of these r.v.'s. In Section 2, we reformulate the problem in terms of convolutions of vectors, introduce generating functions and roots of unity. In Section 3, we prove our main theorem which says that the r.v.'s ξ_{1} and ξ_{2} must have uniform distributions on specific sets of integers. In Section 4, we develop several schemes for analytic and numerical construction of the distributions of the r.v.'s ξ_{1} and ξ_{2}, which are expressed in terms of these specific sets of integers. In particular, we shall establish a connection between our main problem and the problem of ordered factorization of integers into primes. Our motivation for studying the problem is given in Section 2.2.

For simplicity of notation, all vectors in this paper are rows (rather than columns).

2. Reformulation of the main problem

2.1. Vectors and their convolutions

If F, F_{1} and F_{2} denote the distribution functions of ξ, ξ_{1} and ξ_{2}, respectively, then (1) is equivalent to $F=F_{1} \star F_{2}$, where \star denotes the convolution of distribution functions.

[^0]If ξ_{1} and ξ_{2} satisfying (1) exist, then they have to be supported on the sets of integers $\{0,1, \ldots, L\}$ and $\{0,1, \ldots, K\}$ for some integral L and $K=N-L$; otherwise, we get an easy contradiction.

Denote

$$
\begin{equation*}
q_{l}=\mathrm{P}\left\{\xi_{1}=l\right\}, \quad r_{k}=\mathrm{P}\left\{\xi_{2}=k\right\} ; \quad l=0,1, \ldots, L ; k=0,1, \ldots, K . \tag{2}
\end{equation*}
$$

These numbers obviously satisfy

$$
\begin{equation*}
q_{l} \geq 0(l=0,1, \ldots, L), \quad \sum_{l=0}^{L} q_{l}=1 ; \quad r_{k} \geq 0(k=0,1, \ldots, K), \quad \sum_{k=0}^{K} r_{k}=1 . \tag{3}
\end{equation*}
$$

In terms of numbers (2), the relation $F=F_{1} \star F_{2}$ can be written as

$$
\begin{equation*}
\frac{1}{N+1}=\sum_{l=\max \{0, n-K\}}^{\min \{n, L\}} q_{l} r_{n-l} \text { for all } n=0,1, \ldots, N \tag{4}
\end{equation*}
$$

Lemma 1. The numbers (2) satisfying (3) and (4) exist if and only if there exist nonnegative numbers a_{0}, \ldots, a_{L} and b_{0}, \ldots, b_{K} satisfying

$$
\begin{equation*}
1=\sum_{l=\max \{0, n-K\}}^{\min \{n, L\}} a_{l} b_{n-l} \text { for all } n=0,1, \ldots, N . \tag{5}
\end{equation*}
$$

Proof. (i) If the numbers (3) satisfying (4) exist, then we can simply set $a_{l}=(N+1) q_{l}(l=0,1, \ldots, L)$ and $b_{k}=r_{k}(k=$ $0,1, \ldots, K)$.
(ii) Assume that there exist nonnegative numbers a_{0}, \ldots, a_{L} and b_{0}, \ldots, b_{K} satisfying (5). Set

$$
\begin{equation*}
n_{1}=\sum_{l=0}^{L} a_{l}, \quad n_{2}=\sum_{k=0}^{K} b_{k} \tag{6}
\end{equation*}
$$

Since

$$
\sum_{n=0}^{N} \sum_{l=\max \{0, n-K\}}^{\min \{n, L\}} a_{l} b_{n-l}=\sum_{l=0}^{L} a_{l} \cdot \sum_{k=0}^{K} b_{k},
$$

it follows from (5) that

$$
\begin{equation*}
n_{1} n_{2}=N+1 . \tag{7}
\end{equation*}
$$

Set $q_{l}=a_{l} / n_{1}$ for all $l=0,1, \ldots, L$ and $r_{k}=b_{k} / n_{2}$ for all $k=0,1, \ldots, K$. Then q_{l} and r_{k} satisfy (3) and (4). The proof is complete.

Consider the sets of numbers a_{0}, \ldots, a_{L} and b_{0}, \ldots, b_{K} from Lemma 1 . Set

$$
\begin{equation*}
\mathbb{A}=\left(a_{0}, \ldots, a_{L}\right) \in \mathrm{R}_{+}^{L+1}, \quad \mathbb{B}=\left(b_{0}, \ldots, b_{K}\right) \in \mathrm{R}_{+}^{K+1} \quad \text { and } \quad \mathbb{C}_{N}=(1, \ldots, 1) \in \mathrm{R}^{N+1}, \tag{8}
\end{equation*}
$$

where for any M we denote by R_{+}^{M} the set of row-vectors of size M with nonnegative components. Then the relation (5) is simply

$$
\begin{equation*}
\mathbb{A} \star \mathbb{B}=\mathbb{C}_{N} \tag{9}
\end{equation*}
$$

We now formalize the main problem as follows.
The problem. For given $N>1$ and $0 \leq L \leq N$, establish the existence of vectors $\mathbb{A} \in \mathbb{R}_{+}^{L+1}$ and $\mathbb{B} \in \mathbb{R}_{+}^{N-L+1}$ so that the relation (9) holds and, if such vectors exist, construct them.

Note that this problem is more difficult than the problem stated in the abstract as it requires deconvoluting the uniform distribution for any given N and L, whereas in the abstract only N was assumed to be fixed.

It follows from (9) that $a_{0} b_{0}=1$. The validity of (9) for some vectors \mathbb{A} and \mathbb{B} is equivalent to the validity of $\widetilde{\mathbb{A}} * \widetilde{\mathbb{B}}=\mathbb{C}_{N}$ with $\widetilde{\mathbb{A}}=c \mathbb{A}$ and $\widetilde{\mathbb{B}}=\mathbb{B} / c$, for any $c>0$. We choose \mathbb{A} so that $a_{0}=1$ (the equation $a_{0} b_{0}=1$ does not allow a_{0} to be zero). Then $a_{0} b_{0}=1$ yields $b_{0}=1$. Summarizing this paragraph, without loss of generality we assume

$$
\begin{equation*}
a_{0}=b_{0}=1 . \tag{10}
\end{equation*}
$$

https://daneshyari.com/en/article/1154176

Download Persian Version:
https://daneshyari.com/article/1154176

Daneshyari.com

[^0]: * Corresponding author at: School of Mathematics, Cardiff University, CF24 4AG, UK.

 E-mail addresses: ZhigljavskyAA@cardiff.ac.uk (A. Zhigljavsky), n.golyandina@spbu.ru (N. Golyandina), Svyatoslav.Gryaznov@statmod.ru (S. Gryaznov).
 http://dx.doi.org/10.1016/j.spl.2016.06.006
 0167-7152/© 2016 Elsevier B.V. All rights reserved.

