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a b s t r a c t

We provide
√
n-consistency results regarding estimation of the spectral representation of

covariance operators of Hilbertian time series, in a setting with imperfect measurements.
This is a generalization of the method developed in Bathia et al. (2010). The generalization
relies on an important property of centered random elements in a separable Hilbert
space, namely, that they lie almost surely in the closed linear span of the associated
covariance operator. We provide a straightforward proof to this fact. This result is, to our
knowledge, overlooked in the literature. It incidentally gives a rigorous formulation of
Principal Component Analysis in Hilbert spaces.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper,weprovide theoretical results regarding estimation of the spectral representation of the covariance operator
of stationary Hilbertian time series. This is a generalization of the method developed in Bathia et al. (2010) to a setting of
random elements in a separable Hilbert space. The approach taken in Bathia et al. (2010) relates to functional Principal
Component Analysis and, similarly to the latter, relies strongly on the Karhunen–Loéve (K–L) theorem. The authors develop
the theory in the context of curve time series, with each random curve in the sequence satisfying the conditions of the K–L
Theorem which, together with a stationarity assumption, ensures that the curves can all be expanded in the same basis—
namely, the basis induced by their zero-lag covariance function. The idea is to identify the dimension of the spaceM spanned
by this basis (finite by assumption), and to estimateM , when the curves are observedwith some degree of error. Specifically,
it is assumed that the statistician can only observe the curve time series (Yt), where

Yt = Xt + ϵt ,

whereas the curve time series of interest is actually (Xt). Here Yt , Xt and ϵt are random functions (curves) defined on [0, 1].
Estimation of M in this framework was previously addressed in Hall and Vial (2006) assuming the curves are i.i.d. (in t), a
setting in which the problem is indeed unsolvable in the sense that one cannot separate Xt from ϵt . The authors propose a
Deus ex machina solution which consists in assuming that ϵt goes to 0 as the sample size grows. Bathia et al. (2010) in turn
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resolve this issue by imposing a dependence structure in the evolution of (Xt). Their key assumption is that, at some lag k,
the kth lag autocovariance matrix of the random vector composed by the Fourier coefficients of Xt in M , is full rank. In our
setting this corresponds to Assumption (A1) (see below).

In Bathia et al. (2010) it is assumed that each of the stochastic processes (Xt (u) : u ∈ [0, 1]) satisfy the conditions of
the K–L Theorem (and similarly for ϵt ), and as a consequence the curves are in fact random elements with values in the
Hilbert space L2 [0, 1]. Therefore, since every separable Hilbert space is isomorphic to L2 [0, 1], the idea of a generalization
to separableHilbert spaces of the aforementionedmethodologymight seem, at first, rather dull. The issue is that transforming
the data (that is, applying the isomorphism)may not be feasible nor desirable in applications. For instance, the isomorphismmay
involve calculating the Fourier coefficients in some ‘rule-of-thumb’ basis which might yield infinite series even when the
curves are actually finite dimensional.

The approach that we take here relies instead on the key feature that a centered Hilbertian random element of strong
second order, lies almost surely in the closed linear span of its corresponding covariance operator. Understanding of this
statement requires a bit of theory which we now shortly review. Given a separable Hilbert space H endowed with inner-
product ⟨·, ·⟩ and norm ∥ · ∥, a random element in H is a Borel measurable map ξ : Ω → H , where (Ω,F , P) is a probability
space. Also, for q ≥ 1, if E∥ξ∥q < ∞ we say that ξ is of strong order q and write ξ ∈ LqP (H). In this case, there is a unique
element hξ ∈ H satisfying the identity E⟨ξ, f ⟩ = ⟨hξ , f ⟩ for all f ∈ H . The element hξ is called the expectation of ξ and is
denoted by Eξ . If Eξ = 0 we say that ξ is centered. If ξ and η are centered random elements in H of strong order 2, they are
said to be (mutually) strongly orthogonal if, for each h, f ∈ H , it holds that E⟨h, ξ⟩⟨f , η⟩ = 0. Further, let L (H) denote the
Banach space of bounded linear operators acting on H , and let A ∈ L (H). If for some (and hence, all) orthonormal basis
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< ∞, we say that A is a Hilbert–Schmidt operator. The set L2 (H) of Hilbert–Schmidt
operators is itself a separable Hilbert space with inner-product ⟨A, B⟩2 =
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⟩, with ∥·∥2 being the induced

norm. An operator T ∈ L (H) is said to be nuclear, or trace-class, if T = AB for some Hilbert–Schmidt operators A and B. If
ξ ∈ L2P (H), its covariance operator is the nuclear operator Rξ (h) := E⟨ξ, h⟩ξ , h ∈ H . More generally, if ξ, η ∈ L2P (H), their
cross-covariance operator is defined, for h ∈ H , by Rξ,η (h) := E⟨ξ, h⟩η.

The key result that we mentioned above allows one to dispense with considerations of ‘sample path properties’ of
a random curve by addressing the spectral representation of a Hilbertian random element directly. In other words, the
Karhunen–Loéve Theorem is just a special case1 of a more general phenomenon. The formal statement of this result (which
motivates – and for thatmatter, justifies – our approach) is not a newone: it appears, for example, in a slightly different guise
as an exercise in Vakhania et al. (1987). However, it is in our opinion rather overlooked in the literature, perhaps because of
the technical level required for stating it in full generality. Here we provide a statement requiring less theory, and we give
a straightforward proof which is, to our knowledge, a new one. In this paper H is always assumed to be a real Hilbert space,
but with minor adaptations all the results hold for complex H .

Theorem 1. Let H be a separable Hilbert space, and assume ξ is a centered random element in H of strong second order, with
covariance operator R. Then ξ ⊥ ker(R) almost surely.

Corollary 1. In the conditions of Theorem 1, let

λj : j ∈ J


be the (possibly finite) nonincreasing sequence of nonzero eigenvalues

of R, repeated according to multiplicity, and let

ϕj : j ∈ J


denote the orthonormal set of associated eigenvectors. Then

(i) ξ(ω) =


j∈J⟨ξ(ω), ϕj⟩ϕj in H, almost surely;
(ii) ξ =


j∈J⟨ξ, ϕj⟩ϕj in L2P(H).

Moreover, the scalar random variables ⟨ξ, ϕi⟩ and ⟨ξ, ϕj⟩ are uncorrelated if i ≠ j, with E⟨ξ, ϕj⟩
2

= λj.

Remark. (a) Although it is beyond the scope of thiswork,we call attention to the fact that Theorem1 and Corollary 1 provide
a rigorous justification of Principal Component Analysis for Hilbertian random elements. (b) In Corollary 1 either J = N or,
whenever R is of rank d < ∞, J = {1, . . . , d}.

Proofs to the above and subsequent statements are given in the Appendix. We can now adapt the methodology of Bathia
et al. (2010) to a more general setting.

2. The model

In what follows (Ω,F , P) is a fixed complete probability space. Consider a stationary process (ξt : t ∈ T) of random
elements with values in a separable Hilbert space H . Here T is either N ∪ {0} or Z. We assume throughout that ξ0 is a
centered random element in H of strong second order. Of course, the stationarity assumption ensures that these properties
are shared by all the ξt . Now let

Rk (h) := E⟨ξ0, h⟩ξk, h ∈ H,

1 This is not entirely true since the Karhunen–Loéve Theorem states uniform (in [0, 1]) L2 (Ω) convergence.
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